Public Health Reports

Evaluation of Detergents

IV. A Correlation of Washing Performance With Dissolving and Wetting Ability

By C. C. RUCHHOFT and FRANCIS I, NORRIS*

During the past 4 years a study of detergents for use in washing utensils and dishes in dairies and restaurants was undertaken by the Environmental Health Center at the request of a number of State and municipal health departments. Methods of evaluating detergents were investigated, and, in the course of the study, an experimental dishwashing machine and a procedure for a washing performance test were developed (1). The reproducibility of the test was not entirely satisfactory at first, and continuing study disclosed some of the factors causing variations in the performance test. The testing procedure for any detergent in this machine was then improved (2) so that the relative cleansing ability of dishwashing detergents under standardized conditions could be easily determined. With this testing procedure, dishwashing detergents may be classified as excellent, good, fair, and poor. The performance test may be used by any health laboratory in making recommendations on detergents to restaurant and dairy operators.

However, there are a number of criteria of detergent solutions, such as alkalinity, pH, surface tension, emulsification, and so forth, which are simpler to evaluate and are important factors in detergency. Unfortunately, as is well known, no single or simple characteristic will always indicate the effectiveness of a detergent in dishwashing performance. It was the purpose of this study to determine and compare the various criteria or factors of detergency with the results obtained in the previously described washing performance test. It was hoped that some correlation might be found between the results of the washing performance test and the values of the detergency factors or some combination of them.

[•]Public Health Service, Environmental Health Center, Cincinnati, Ohio. Presented at the 116th National Meeting of the American Chemical Society, Atlantic City, N. J., September 1949.

NOTE: References 1, 2, and 4 are considered the first three papers in this series.

In this study a detergent is broadly defined as any compound that is used or recommended for cleaning purposes or is used or proposed as an ingredient in cleansers. No attempt was made to obtain samples of all detergents or components of detergents on the market. The number of such materials may easily run into the hundreds. A representative number of samples representing each type of detergent was collected at random as manufacturers' samples or bought in the retail market. The samples used were classified simply as soaps or soap mixtures, alkaline detergents and buffers, surface active agents, and combinations of these upon a basis to be described.

Washing Performance Test

The laboratory washing performance test was applied to each detergent under study. In this test, glass microscope slides were dipped in a standard soil solution and drained so that uniform amounts of soil were deposited. The slides were then baked for 1 hour at 95° C. Six slides were washed at a time in a 0.3 percent solution of the detergent in Cincinnati tap water¹ at 60° C. for 3 minutes and rinsed for 2 minutes in boiling tap water. Light transmission through clean, soiled, and washed slides was measured in a photometer and the percent of soil removal was calculated following the methods described (2). Each detergent was tested on four different days to distribute possible variations in the water, and the mean values were taken as indicative of the relative washing efficiency of the detergent.

Arbitrary washing performance test ratings for excellent, good, fair, and poor dishwashing performance were set up. The percentage of soil removal washing performance ranges adopted for these were: excellent, 93.5 percent and above; good, 81–93 percent; fair, 50–80 percent, and poor, less than 50 percent soil removal. Using this arbitrary scale, it was found that 27 of the 98 detergents were rated as excellent, 22 were good, 14 were fair, and 35 were poor.

Other Determinations

In addition to washing performance the following determinations were made:

1. Phenolphthalein and total alkalinity, expressed as percent Na₂O in the undissolved sample.

Alkalinity was measured by titrating 50 ml. of 0.3 percent solution of the detergent in distilled water using 0.1000 N HCl with phenolphthalein and a mixed indicator ² with an endpoint approximately that of methyl orange. The number of ml. HCl x 2.067 equals percentage of Na₂O in the original sample.

¹ Hardness about 100 ppm.

² 0.02 grams methyl red ground in mortar with 7.4 ml. N/20 NaOH, 0.109 Brom cresol green ground with 29 ml. N/20 NaOH. (Make up to 100 ml. with distilled water.)

2. Surface tension of a 0.3 percent solution in distilled water at room temperature.

3. Interfacial tension between a 0.3 percent water solution and mineral and cottonseed oils.

Surface and interfacial tension were measured with a DuNouy precision ring tensiometer.

4. Emulsifying ability of a 0.3 percent solution for mineral and and cottonseed oils.

Emulsifying ability was measured with the following qualitative test: 20 ml. of 0.3 percent detergent solution and 10 ml. of oil were carefully poured in a 1-inch test tube. After 10 quick inversions the size of globules and rate of breakdown were observed. Ratings were as follows:

Excellent-small globules, no breakdown in 30 minutes.

Good-medium globules, emulsion standing from 15-20 minutes.

Fair-large globules, emulsion standing from 3-5 minutes.

Poor-large globules breaking down in less than 2 minutes.

5. pH of a 0.3 solution.

pH was determined with a Leeds and Northup electrometric pH meter using a glass electrode. A correction for sodium ions was made.

6. Sequestering ability.

Sequestering ability was determined by titrating 100 ml. of 0.3 percent detergent solution at 60° C. with a solution of CaCl₂ containing the equivalent of 10 mg. CaCO₃ per ml. until the first permanent turbidity was observed. Results were expressed as ppm CaCO₃ absorbed by the solution (4).

Spreading coefficient for the solution over the mineral oil and inactive alkalinity (total alkalinity less twice the phenolphthalein alkalinity) were calculated. The alkalinity, pH, surface tension, interfacial tension, emulsifying ability, and sequestering ability of the solution will be referred to hereafter as factors of detergency.

Analysis of the Data

Analysis of the data indicated no direct correlation of any single factor of detergency with the dishwashing performance test efficiency. When the average value of any factor such as surface tension for all detergents in each of the four washing performance classifications is plotted against washing performance test results, a parabolic curve results. This indicates that a poor detergent may have a single detergency characteristic identical with an excellent detergent. For example, the means of the surface tension for each washing performance group were 33.2, 44.3, 55.6, and 49.0 for the detergents falling in the excellent, good, fair, and poor classifications, respectively. At first glance, this factor appears to be a fair choice for separating the performance groups. While it is one of the best of the factors studied, the standard deviation of the surface tension from the mean value for the performance classification group was found to be ± 4.9 , ± 10.5 ,

May 25, 1951

 ± 16.5 , and ± 18.1 , respectively, for the four washing performance test classifications. The maximum to minimum surface tension ranges found for the classifications were 46.7-27.3, 60.9-30.0, 71.9-31.7, and 72.0-28.3, respectively. Thus, no division between good and poor detergents can be made on the basis of this factor alone.

When eight characteristics including pH; phenolphthalein, inactive and total alkalinity; surface tension; and interfacial tension, spreading coefficient, and emulsification with mineral oil were taken as criteria, some breakdown into performance groups could be made.

Several methods for classification were tried, but maximum to minimum range values for each performance group were found best for correlation study. Detergents with all detergency factors falling into the maximum to minimum range for these factors in the 93.5-100 percent removal group were evaluated as excellent. In a similar way the entire group of detergency factors was used to evaluate the detergents in the other performance classifications shown by the perform-Even with this method of evaluation using all factors, ance test. only 67 or 68.4 percent of the samples could be classified into the same performance rating indicated by the washing performance test. One of the detergents showing a 2.5 percent soil removal by the performance test would be classified as an excellent detergent when judged by the group of detergency factors. Obviously, detergent efficiency evaluation on the basis of the entire group of factors could not be considered as feasible for all detergents. It was, therefore, decided to determine whether more successful evaluation might be made on some classes of detergents.

Classification of Detergents

The entire group of detergents was separated into the four classes, that is, combined detergents, alkaline detergents, surface active agents, and soaps. This classification was made using the surface tension, phenolphthalein and total alkalinity, and appearance as criteria. Soaps were classified also on the basis of a distinctive "silky" turbidity which they impart to water of about 100 ppm hardness after standing about 15–30 minutes at room temperature. The outline of the classification is as follows:

Class	Surface tension limits for class	Alkalinity limits for class in terms of Na ₂ O			
	Class	Phenolphthalein	Total		
Combined detergents.	dynes/cm Less than 60.0 Over 60.0	percent	percent Over 7.0.		
Surface active agents	Less than 40.0	Less than 1.0	Over 3.0.		

While the above classification is simple it was sufficient for the purposes of this study.

The number of samples found in each class and the number and percent found in each performance group are shown in table 1. These data show that of the detergents studied, combined detergents are usually good or excellent; soaps are usually excellent, and alkaline detergents and buffers and surface active agents are generally poor.

A careful study of the characteristics of each class indicated that a rough approximation could be made for grouping the detergents in each class by the maximum to minimum values for selected detergency factors. These maximum to minimum ranges for the selected detergency factors are given in table 2. These data indicate that individual factors cover a wide range in each group for each class of detergents. However, if a combination of factors is used, each factor contributes its influence.

Class	Excellent, 93.5-100		Good, 81-93		Fair, 50-80		Poor, less than 50		Total	
	Num-	Per-	Num-	Per-	Num-	Per-	Num-	Per-	Num-	Per-
	ber	cent	ber	cent	ber	cent	ber	cent	ber	cent
Combined	17	42.5	16	40.0	3	7.5	4	10. 0	40	40. 8
	0	0.0	2	8.4	8	33.3	14	58. 3	24	24. 5
	0	0.0	4	20.0	1	5.0	15	75. 0	20	20. 4
	10	71.4	0	0.0	3	21.4	1	7. 2	14	14. 3

22

22.4

15

15.3

Table 1. Performance test efficiency ratings for four classes of detergents, by percentage of washing efficiency soil removal range

Combined Detergents. With combined detergents the maximum to minimum values for pH, total alkalinity, surface tension, interfacial tension, and emulsifications are deemed significant.

27.6

27

Soaps. With soaps, very low alkalinity indicates poor detergency, but increasing amounts of phenolphthalein and total alkalinity indicate decreasing efficiency.

Alkaline Detergents. An increase in inactive alkalinity and minor increases in surface tension tend to decrease the efficiency of alkaline Very high or low pH values also decrease the detergents and buffers. efficiencies of alkaline detergents.

Surfactants. Contrary to the results in other classes of detergents, an increased interfacial tension and excellent emulsification indicate a good surface active agent.

Limiting values for the selected factors were established for each class of detergent. These are shown in table 3. By classification according to limits suggested for these factors in table 3, it was found possible to reach the same performance evaluation as the washing performance test in 90 or 91.8 percent of the 98 samples. This is shown in tables 4, 5, 6, and 7.

Percent of grand total

Totals.

34.7

34

100.0

98

98 100.0

			Alkalinity percent Na ₂ O						
Class and washing performance rating group	p	H		lphthal- in	Inad	etive	Total		
	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	
Combined detergents									
Excellent Good Fair Poor	12.2 13.0 11.3 11.8	9.4 9.2 10.1 9.3	21. 8 26. 0 20. 6 13. 4	2.5 1.1 13.6 7.0	15.4 15.2 7.3 14.6	0.0 0.0 0.0 0.0	37. 9 49. 6 40. 5 30. 2	7.4 17.4 34.5 22.5	
Alkaline detergents and buffers									
Excellent ¹ Good Fair Poor	11.8 13.0 13.0	10.3 7.3 4.4	12.7 72.2 73.0	10.4 0.0 0.0	0.8 7.4 27.3	0.6 0.0 0.0	26.0 73.8 73.9	21.6 3.7 0.0	
Surface active agents									
Excellent ¹ Good Fair Poor	6.9 6.3 9.1	6.3 6.3 5.2	0.0 0.0 0.6	0.0 0.0 0.0	2.3 0.2 14.0	0.4 0.2 0.1	2.3 0.2 14.0	0.4 0.2 0.1	
Soap: Excellent	10.6	9.5	10.3	3.6	3.4	0.0	20.0	9.3	
Good 1 Fair Poor	10. 9 10. 1	10. 3 10. 1	15.1 1.0	14.4 1.0	5.9 1.1	0.0 1.1	34. 8 3. 1	27.5 3.1	

Table 2. Maximum and minimum values for factors of detergency correlated with washing performance ratings on four classes of detergents

					Mine	eral oil				
Class and washing performance rating group	Surface dyne	dynes/cm.		cial ten- nes/cm.	Emuls	ification		ading icient	Sequestration	
	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.
Combined detergents										
Excellent Good Fair Poor	46. 2 56. 0 58. 5 40. 3	29. 2 34. 2 45. 2 30. 7	12.9 28.1 24.1 21.1	1.8 5.2 14.0 1.0	E G F E	F P P	-0.4 -8.9 -26.4 -0.2	-26. 2 -51. 3 -49. 8 -19. 7	420 410 90 >1000	0 40 40 0
Alkaline detergents and buffers										
Excellent ¹ Good	68.9	66.3	33.3	23.2	P	 P		69.4	400	70
Fair Poor	71.9 72.0	68.0 64.0	35.8 36.5	21.3 18.0	P P	Р Р	-54.6 -49.4	-75.5 -74.7	>1000 >1000	10 20
Surface active agents										•
Excellent ¹ Good Fair Poor	33. 4 31. 7 39. 1	30.0 31.7 28.3	9.4 3.2 14.7	5.5 3.2 1.0	E E E	E E P	-2.7 -2.1 +1.4	-9.8 -2.7 -13.9	>1000 220 >1000	140 220 0
Soap [*]										
Excellent	30.8	27. 2	5. 0	1.0	Е	G	+3.7	-2.4	10	0
Fair Poor	33. 1 30. 6	31. 7 30. 6	5.9 8.6	4.7 8.6	E F	G F	-4.0 -6.4	-6.2 -6.4	0 10	0 10

E=Excellent; G=Good; F=Fair; P=Poor. ¹ None found with this rating.

Table 3. Limiting values of factors of detergency for evaluating performance characteristics

						1	Limi	ting	values o	of facto	rs			
			Alk	alini	ty as	perce	ent N	Ia2O					Mineral oi	1
Class and washing performance rating group	1	рĦ	ph	enol- tha- in	Inac	tive	т	otal	Sur tens dyne	sion	Int fac tens dyne	ial sion	Emuls	fication
	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum
Combined detergents														
Excellent	12. 2	9.4					40	7	(1)	13	2	≥Good o	r fair if sur- ension≤35.
Good	13	9.4					50	17	(1)		28	5	>Good or	poor if sur- ension ≤ 56
Fair Poor	13 	9. 4 <9. 4					50 	35 			28 >28	14 <2		
Alkaline detergents and buffers														
Excellent ² Good Fair Poor	12 13 	10 8 <8			1.0 8.0	 >8	 		69 70.6 >70.6	66 70 <66		 		
Surface active agents														
Excellent ² Good Fair Poor					 			 	33 33 33	30 30 <30	 10 >10	 3 <3		E E E E
Soaps														
Excellent Good Fair Poor			10 13 16	4 11 14		 	20 26 35	6 21 27 	31 	27 31				

¹ See emulsification.

² None found with this rating.

Table 4.	Correlation of ratings on the basis of detergency factors with rating based on
	washing performance tests for soaps

ficiency ercent)	Phenolp Found	Rating group	To Found	Rating group	Found	Rating	ciency By ma- chine	By fac- tor
ercent)	Found		Found		Found			
07 0								
97.0	3.6 9.1	E	9.3 14.6	E	27.2 30.0	E E E	E	E
96.0 96.0 96.0	4.1 7.3 6.6	NE E E E	11.6 15.7 17.1	ĒEEE	29.6 30.8 29.2	E E E E	EEEE	
95.5 94.5 94.5	4.8 6.0 5.2	E E E	10.2 10.1 10.0	E E E E F	28.1 28.4 27.5	E E E B	EEEF	ĒEE
93.5 80.0 79.0 61.5	0.2 15.1 14.7 14.4	F F F	11.8 27.7 27.5 34.8	F	29.0 32.1 33.1 31.7	F	e F F F	e F F F
	96.0 96.0 95.5 95.5 94.5 94.5 93.5 80.0 79.0	96.0 4.1 96.0 7.3 95.5 10.3 95.5 4.8 94.5 6.0 94.5 5.2 93.5 6.2 80.0 15.1 79.0 14.7 61.5 14.4	96.0 4.1 E 96.0 7.3 E 96.0 6.6 E 95.5 10.3 E 95.5 4.8 E 94.5 5.2 E 93.5 6.2 E 93.5 6.2 E 80.0 15.1 F 79.0 14.7 F 61.5 14.4 F	80.0 15.1 F 27.7 79.0 14.7 F 27.5 61.5 14.4 F 34.8	80.0 15.1 F 27.7 F 79.0 14.7 F 27.5 F 61.5 14.4 F 34.8 F	61.5 14.4 F 34.8 F 31.7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

¹14, or 100 percent, of ratings in agreement.

May 25, 1951 940097-51-2

	ishing pe	rforma	ice test	for surj	ace acti	ive agen	ts		
		0			Mine	ral oil		Wh:	
Surface active detergent	Washing perform- ance test efficiency	Surface tension dynes/cm.		Interfaction sion dy	eial ten- nes/cm.	Emulsi	fication	Washing effi- ciency rating ¹	
	(percent)	Found	Rating group	Found	Rating group	Found	Rating group	By ma- chine	By factor
1	78.0 13.0 12.0 10.5 5.0 2.0 0	30. 0 33. 2 33. 4 33. 2 31. 7 28. 3 39. 0 29. 1 30. 2 34. 3 31. 8 35. 5 34. 3	000000 00000 0000 0000 0000 0000 0000 0000	5.56.97.24 $9.423.814.72.33.81.81.61.0$	ტტტნ ლისის	eeeefffeeepf	00000 0000 0000 0000 0000 0000 0000 0000	ԵԵԵԵ ԲՔՔՔՔՔՔ	OOOF PPFPPP PPFPPP
14. Onyx Oil and Chem. Co. D921	0	38. 3	Р	3. 5	F	Е	G	Р	Р
15. Onyx Oil and Chem. Co. D920	Ó	39. 1 30. 1 32. 3 32. 4 32. 0 34. 2	ዮ 6 6 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3.2 1.0 1.3 1.0 1.6 2.2	ች የ የ የ የ የ	ССЕЕЕ	Բ Ե Ե Ե Բ	P P P P P	P P P P P

Table 5. Correlation of ratings on the basis of detergency factors with rating based on

1 19. or 95 percent, of ratings in agreement.

It must be pointed out that the limiting factors were set by a comparatively few samples and are not definite in some groups. Therefore, these limits were set up merely as a guide and will not show exact performance groupings. The divisions are simple and the counter balancing effect of one factor may change the actual efficiency.

The washing performance test is not sufficiently reproducibile to permit classification of the detergent in any efficiency category with certainty by one test. In a series of four runs for each test, it was found that certain detergents would show large deviations in per-It was found that some detergents classiformance from the mean. fied as fair by a long series of tests would occasionally show excellent In the same way poor detergents would give good results results. Excellent detergents would sometimes be rated as on some tests. only good by one washing performance test and good detergents might occasionally run excellent or fair.

The fact that the removal of soil can be evaluated at present for only one type of surface, glass, is an important limitation of the test. The percentage removal of soil from metal or chinaware may differ from that on glass for the various detergents.

With the above limitations in mind, an experiment was conducted using each of the 22 combined detergents which showed less than ex-These 22 detergents were modified by cellent performance ratings. the addition of a nonionic wetting agent, an alkaline agent and/or a

Table 6.	Correlation of ratings on the basis of detergency factors with ratings based on
	washing performance test for alkaline detergents and buffers

Alkaline detergent or buffer	Washing perfor- mance test	р	н	alka	ctive linity tNa2O	ten	face sion s/cm.	Washing efficiency rating ¹	
build	effi- ciency (percent)	Found	Rating group	Found	Rating group	Found	Rating group	By ma- chine	By factor
	87.0	10.3	G	0.6	G	68.9	G	G	G
	82.0	11.8	Ğ	0.8	Ĝ	66.3	Ğ	G	G
	74.5	10.9	Ġ	0.0	Ĝ	71.9	P	F	P
	73.0	13.0	F	0. Ŏ	G G	70.6	Ē	F	F
	71.0	10.2	G	2.3	F	66.2	Ĝ	F	P F F
. Sodium tetrapyrophos-	65	9.8	F	1.3	F	70.5	F	F	F
phate									
. Sodium tetraphosphate	61	8.2	F	7.4	F	70.3	F	F	F
. Trisodium phosphate.	59.5	12.2	F P	0.0	G	70.5	F	F	Ē
Sodium hexametaphos-	53	7.3	Р	3.7	F	71.5	P	F	P
phate								1	
0. Sodium sesquisilicate.	53	12.9	F	0.0	G	68.0	G	F	F
1. Sodium meta-silicate	47	12.4	F	0.0	G	71.2	P	P	Р
2	42	11.6	Ē	• 0.0	G	64.2	P P	P	Р
3. Sodium carbonate	34.5	11.3	G	27.0	P	70.6	F	Р	Р
Columbia alkali, mod-									
ified soda No. 100	28.5	9.9	F	15.8	P	70.3	F	P	Р
5. Columbia alkali, mod-		1	Ĩ	1				1	
ified soda No. 300	19.5	9.8	F	17.4	P F	71.5	P	P	P P
6	19	11.0	G	7.6	F	71.1	P	P	Р
/	17	13.0	F	0.0	G	71.4	P	P	Р
8. Columbia alkali, mod-		1			1				
ified soda No. 200	11	10.3	G	8.3	P G	70.7	P	P	P P P P
9. Sodium hydroxide	9	13	F	0.0	G	71.2	P	P	Р
0. Borax	9	9.3	F	0.0	G	70.8	P	P P	Р
1. Sodium bicarbonate	2.5	8.1	F F F	27.3	P P	71.6	P	P	Р
2. Disodium phosphate	Ō	8.8	F	9.5	P	72.0	P	P	P;
3. Monosodium phos-	-				1				
phate	0	4.4	Р	0.0	G	70.3	F	P	P P
L	ŏ	7.7	P	1.4	F	62.8	P	P	Р

122, or 91.7 percent, of ratings in agreement.

buffer salt to obtain the desired detergency characteristics of excellent detergents. Seven of the alkaline agents classified as fair by performance were modified by adding a nonionic wetting agent to change their characteristics to excellent. Two detergents were formulated by mixtures of materials to obtain excellent detergency characteristics. Washing performance tests were then run on the entire series of detergents. The results are shown in tables 8 and 9.

Of the 15 detergents that were good originally, 13, or 86.7 percent, were improved and showed excellent washing performance tests by slight modification (table 8). The washing performance test efficiency of the two others was improved slightly, from 88 percent to 91.5 percent and from 85 percent to 91 percent. None of the fair or poor detergents were improved to excellent, but all of the fair and one of the poor were brought into the good performance range group with improvements of 11 percent to 37.5 percent in the performance test. Three of the poor detergents were not noticeably improved even with drastic modification. In one case a 50 percent change in composition failed to bring about the desired washing performance test result.

Four of the alkaline or buffer detergents previously rated fair were

	nce test cent)				otal linity	dynes/cm.		Mine	eral oil		cla	ting Issi- tion 1
Combined detergent	Washing performance test efficiency (percent)	p	н	per	percent Na2O		Interfacial tension dynes/cm.		Emulsifi- cation		performance test	Ls
	Washing effici	Found	Group	Found	Group	Surface tension	Found	Group	Found	Group	By perite	By factors
1 2 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40.	$\begin{array}{c} 99\\ 96.5\\ 96.5\\ 96.5\\ 96.9\\ 96.9\\ 96.9\\ 96.9\\ 96.9\\ 96.9\\ 96.9\\ 96.9\\ 95.5\\ 95.9\\ 95.5\\ 95.9\\ 94.5\\ 93.5\\ 92.9\\ 92.5\\ 91.5\\ 88.8\\ 87.5\\ 84.2\\ 78.9\\ 5.5\\ 84.2\\ 78.9\\ 5.5\\ 84.5\\ 2.0\\ 0\\ 0\\ 2.0\\ \end{array}$	$\begin{array}{c} 10.0\\ 11.1\\ 9.4\\ 9.8\\ 12.2\\ 9.8\\ 10.1\\ 10.9\\ 10.3\\ 9.8\\ 10.1\\ 11.2\\ 212.2\\ 10$	e e e e e e e e e e e e e e e e e e e	$\begin{array}{c} 10.1\\ 37.9\\ 24.4\\ 7.4\\ 7.4\\ 19.8\\ 33.3\\ 26.5\\ 17.9\\ 25.5\\ 17.9\\ 25.6\\ 49.6\\ 835.1\\ 7.4\\ 25.5\\ 17.9\\ 27.5\\ 21.6\\ 6\\ 49.6\\ 8\\ 35.1\\ 7\\ 24.6\\ 8\\ 35.1\\ 17.4\\ 2\\ 40.2\\ 2\\ 32.3\\ 40.5\\ 5\\ 34.6\\ 6\\ 28.6\\ 6\\ 30.2\\ 2.5\\ \end{array}$	ĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔĔ	$\begin{array}{c} 29,2\\ 37,4\\ 33,2\\ 1\\ 42,2\\ 7\\ 33,3\\ 3\\ 35,1\\ 3\\ 33,3\\ 3\\ 55,1\\ 3\\ 30,7\\ 3\\ 55,9\\ 46,2\\ 5\\ 39,3\\ 46,2\\ 5\\ 38,3\\ 51,8\\ 49,4\\ 2\\ 43,0\\ 56,9\\ 6\\ 37,4\\ 39,9\\ 1\\ 42,8\\ 55,1\\ 8\\ 55,1\\ 8\\ 49,4\\ 2\\ 36,6\\ 6\\ 37,4\\ 39,9\\ 1\\ 42,8\\ 55,1\\ 8\\ 30,7\\ 6\\ 32,0\\ 3\\ 40,2\\ 3\\ 51,2\\ 8\\ 30,7\\ 6\\ 32,0\\ 3\\ 40,2\\ 3\\ 51,2\\ 8\\ 30,7\\ 6\\ 32,0\\ 3\\ 40,2\\ 3\\ 51,2\\ 8\\ 30,7\\ 6\\ 32,0\\ 3\\ 40,2\\ 3\\ 51,2\\ 8\\ 30,7\\ 6\\ 32,0\\ 3\\ 40,2\\ 3\\ 51,2\\ 8\\ 30,7\\ 6\\ 32,0\\ 3\\ 30,0\\ 1\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\$	$\begin{array}{c} 7.8\\ 9.6\\ 4.7\\ 2.2\\ 12.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1$	ЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕСЕСССЕСССЕССССССССССС	ВСЕ́́Е́С́́Е́Е́Е́Е́Е́С́О́О́С́Е́О́С́Е́Р́Е́Е́О́С́Е́Е́Е́С́Е́С́Е́Е́Е́Е́Р́	eeeeeceeeeeeeeecoodooceeooeooceooeeeo	ЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕ	EEEEECCEEEEEEEEECOOCOEOCOCOCOCOCOCOFPPP

Table 7.	Comparison	of detergency cor	factors and nbined deter	washing øents	performance	test efficie	ncy for
		0	normen nerer	genus			

¹ 35, or 87.5 percent, of ratings in agreement.

changed to the excellent rating by the addition of as little as 3 percent nonionic wetting agent, which gave the desired factors for the detergent (table 9). One poor alkaline detergent was modified so that it was rated excellent. One of the poor detergents was made fair by modification, but the other was not improved, even though the desired characteristics were present.

The two formulations made by a combination of alkalies and wetting agents, one with about 17 percent wetting agent and the other with only 3 percent wetting agent, gave washing performance test efficiencies of 97.5 percent and 98 percent, respectively. These were formulated to fall within the excellent limiting factors using alkaline or buffer agents with fair (50 percent-80 percent) ratings and wetting

	Way	shing	Wo	shing			Т	otal	0	face		Mine	ral oil	
Combined detergent	perfor	mance		iency	p	н	per	linit y cent a ₂ O	ten	sion sion s/cm.	ten	facial sion s/cm.		ulsi- tion
	•0	*м	•0	*M	•0	*м	*0	*м	•0	•м	•0	•м	•0	•м
18	000000000000000 0 ккк р рр	ненененсенсенсссс	$\begin{array}{c} 93\\ 93\\ 92.5\\ 92\\ 92\\ 91\\ 91\\ 5\\ 88\\ 88\\ 87\\ 85.5\\ 88\\ 85\\ 84\\ 2\\ 78\\ 69.5\\ 53\\ 45.5\\ 21\\ 3\\ 2\end{array}$	$\begin{array}{c} 96.\ 0\\ 94.\ 5\\ 97.\ 0\\ 96.\ 0\\ 97.\ 0\\ 97.\ 0\\ 97.\ 0\\ 97.\ 0\\ 97.\ 0\\ 97.\ 0\\ 99.\ 0\\ 99.\ 0\\ 91.\ 0\\ 95.\ 0\\ 95.\ 0\\ 95.\ 0\\ 89.\ 0\\ 83.\ 0\\ 83.\ 0\\ 83.\ 0\\ 81.\ 0\\ 83.\ 0\\ 81.\ 0\\ 15.\ 0\\ 4.\ 5\end{array}$	$\begin{array}{c} 11.8\\ 10.3\\ 13.0\\ 12.2\\ 10.7\\ 12.0\\ 12.5\\ 11.3\\ 9.2\\ 10.3\\ 11.4\\ 12.1\\ 10.7\\ 12.1\\ 10.7\\ 12.1\\ 10.8\\ 9.3\\ 10.4\\ 11.8\\ 9.3\\ \end{array}$	$\begin{array}{c} 11. 1\\ 10. 5\\ 12. 5\\ 12. 0\\ 10. 6\\ 11. 1\\ 12. 0\\ 11. 2\\ 9. 7\\ 9. 9\\ 11. 3\\ 12. 2\\ 10. 5\\ 12. 0\\ 11. 4\\ 10. 1\\ 9. 8\\ 10. 9\\ 10. 3\\ 11. 4\\ 11. 1\\ 9. 7\end{array}$	$\begin{array}{c} 21 \\ 5 \\ 49. \\ 6 \\ 23. \\ 8 \\ 35. \\ 1 \\ 24. \\ 6 \\ 8 \\ 35. \\ 1 \\ 25. \\ 2 \\ 32. \\ 3 \\ 26. \\ 8 \\ 35. \\ 1 \\ 17. \\ 4 \\ 25. \\ 2 \\ 32. \\ 3 \\ 4 \\ 2. \\ 5 \\ 34. \\ 5 \\ 36. \\ 6 \\ 28. \\ 3 \\ 22. \\ 5 \\ \end{array}$	$\begin{array}{c} 25.8\\ 27.5\\ 32.9\\ 22.3\\ 38.0\\ 28.9\\ 23.4\\ 38.9\\ 19.5\\ 32.5\\ 39.5\\ 31.4\\ 33.9\\ 40.1\\ 33.0\\ 40.1\\ 38.7\\ 40.0\\ 32.9\\ 33.0\\ 40.0\\ 32.9\\ 33.0\\ 27.5\\ \end{array}$	$\begin{array}{r} 46.\ 9\\ 38.\ 3\\ 51.\ 2\\ 50.\ 8\\ 49.\ 4\\ 43.\ 0\\ 56.\ 0\\ 51.\ 9\\ 35.\ 6\\ 37.\ 4\\ 9\\ 35.\ 6\\ 37.\ 4\\ 9\\ 35.\ 1\\ 40.\ 1\\ 42.\ 8\\ 55.\ 1\\ 45.\ 2\\ 45.\ 2\\ 58.\ 5\\ 30.\ 7\\ 31.\ 6\\ 32.\ 0\\ 40.\ 3\\ \end{array}$	$\begin{array}{c} 32.8\\ 33.0\\ 32.8\\ 33.1\\ 32.8\\ 35.3\\ 35.3\\ 33.6\\ 35.2\\ 33.6\\ 35.1\\ 33.5\\ 35.2\\ 33.5\\ 35.2\\ 33.5\\ 32.2\\ 33.5\\ 33.6\\$	$\begin{array}{c} 14.\ 0\\ 10.\ 3\\ 22.\ 8\\ 20.\ 6\\ 13.\ 4\\ 28.\ 1\\ 20.\ 0\\ 5.\ 2\\ 12.\ 0\\ 6.\ 2\\ 13.\ 7\\ 25.\ 4\\ 10.\ 0\\ 13.\ 6\\ 21.\ 0\\ 14.\ 0\\ 24.\ 1\\ 21.\ 1\\ 1.\ 5\\ 1.\ 0\\ 12.\ 2\\ \end{array}$	$\begin{array}{c} \textbf{4.3.4.5.4.3.4.2.1}\\ \textbf{5.5.4.6.6.4.3.5.5.5.7.0.7.1.6.5.3.7}\\ \textbf{5.5.5.4.4.4.4.7.2.2.6.7}\\ \textbf{5.5.5.7.5.7.0.7.1.6.5.3.7}\\ \textbf{5.5.7.5.7.0.7.1.6.5.3.7}\\ \textbf{5.5.7.5.7.0.7.1.6.5.7.5}\\ \textbf{5.5.7.5.7.0.7.1.6.5.7.5}\\ \textbf{5.5.7.5.7.0.7.1.6.5.7.5}\\ \textbf{5.5.7.5.7.0.7.1.6.5.7.5}\\ \textbf{5.5.7.5.7.0.7.1.6.5.7.5}\\ \textbf{5.5.7.5.7.0.7.1.6.5.7.5}\\ \textbf{5.5.7.5.7.0.7.1.6.5.7.5}\\ \textbf{5.5.7.5.7.5.7.5.7.5}\\ \textbf{5.5.7.5.7.5.7.5.7.5}\\ \textbf{5.5.7.5.7.5.7.5.5.5}\\ \textbf{5.5.7.5.7.5.5.5}\\ \textbf{5.5.7.5.7.5.5.5}\\ \textbf{5.5.7.5.7.5.5.5}\\ \textbf{5.5.7.5.5.5.5.5.5.5}\\ \textbf{5.5.7.5.5.5.5.5}\\ \textbf{5.5.7.5.5.5.5}\\ \textbf{5.5.7.5.5.5.5.5.5}\\ \textbf{5.5.7.5.5.5.5.5.5.5}\\ \textbf{5.5.7.5.5.5.5}\\ \textbf{5.5.7.5.5.5.5}\\ \textbf{5.5.5.5.5.5.5.5}\\ \textbf{5.5.5.5.5.5.5}\\ \textbf{5.5.5.5.5.5.5}\\ \textbf{5.5.5.5.5.5.5.5}\\ \textbf{5.5.5.5.5.5.5}\\ \textbf{5.5.5.5.5.5}\\ \textbf{5.5.5.5.5.5.5.5}\\ \textbf{5.5.5.5.5.5.5}\\ \textbf{5.5.5.5.5.5}\\ \textbf{5.5.5.5.5.5}\\ \textbf{5.5.5.5.5.5}\\ \textbf{5.5.5.5.5.5}\\ \textbf{5.5.5.5.5.5}\\ \textbf{5.5.5.5.5.5.5}\\ \textbf{5.5.5.5.5.5}\\ \textbf{5.5.5.5.5.5}\\ \textbf{5.5.5.5.5}\\ \textbf{5.5.5.5}\\ \textbf{5.5.5.5.5}\\ \textbf{5.5.5.5}\\ \textbf{5.5.5.5}\\ \textbf{5.5.5.5}\\ \textbf{5.5.5.5}\\ 5.5.5$	Ⴇĸ ჄĸĸႧĸႧႧႧႧႧႧႧႧႦ	eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Table 8. Results of modification of combined detergents

*O=Original. *M=Modified.

agents with poor or fair ratings. The composition of these formulated detergents were as follows:

Compound	Formula 1	Formula 2
	Percent	Percent
Trisodium phosphate	17	45
Sodium tetraphosphate	66	44
Wetting agent	17	3
Sodium meta-silicate		8

Discussion

A dish and glass cleanser must have the ability to chemically and/or physically remove soil and prevent-it from redepositing. Various authors in the past have attempted to measure cleansing ability of a detergent by single factors. Later work has indicated that soil removal cannot be measured by any single factor. The latter conclusion has been verified in this laboratory.

The factors of detergency may be broken down into three categories:

- 1. Dissolving power (measured by alkalinity factors).
- 2. Wetting ability (measured by surface activity factors).
- 3. Rinsibility.

Although the washing performance test rating of the majority of the samples studied could be correlated with dissolving power and wetting ability, several could not. The majority of the good and many of the fair detergents studied were raised to the excellent performance test

	Was	shing						otal		•		Mine	ral oil	
Detergent	per ma	for- nce oup	effici	shing iency cent	p	н	alka per	linity cent 12O	ten	face sion s/cm.	tens	facial sion s/cm.	Emu cat	ılsifi- ion
	•0	•м	•0	•м	•0	•м	•0	*м	•0	*M	•0	*M	*0	*M
Alkaline														
6 7 8 10 11 13 20	ችችችች ዋዋ ዋ	e e e e e f p	65. 0 61. 0 59. 5 53. 0 47. 0 34. 5 9. 0	93. 5 94. 0 94. 5 95. 5 93. 5 65. 0 7. 0	9.8 8.2 12.2 12.9 12.4 11.3 9.3	10. 0 9. 4 12. 0 12. 4 12. 0 11. 0 9. 4	13. 7 9. 9 18. 4 35. 7 29. 3 55. 1 16. 6	15.7 10.9 22.9 35.2 29.0 55.0 21.5	70. 5 70. 3 70. 5 69. 0 71. 2 70. 6 70. 8	33. 6 37. 2 32. 7 35. 5 34. 3 33. 0 33. 0	30. 7 21. 3 37. 8 28. 7 29. 1 30. 6 36. 7	6.8 9.0 5.0 7.5 6.5 5.2 5.2	P P P P P P	e E E E E E E E E E
Formulated 1 2		E E		97.5 98.0		10.0 11.6		10. 1 15. 1		29. 2 35. 2		5.8 7.3		E E

Table 9. Results of modification of alkaline and formulated detergents

*O=Original. *M=Modified.

range by slight modification of alkalinity and/or surface activity. However, the other fair and poor detergents could not be improved to excellent by modification. This fact suggests that further study of rinsing ability is indicated before accurate estimation of detergent performance may be made on the basis of factors of detergency.

Summary

A series of about 100 commercial detergents and detergent components representing different types of detergents were included in a study involving the application of the washing performance test and the determination of the various factors of detergency. The factors determined included pH; phenolphthalein, inactive and total alkalinity: surface tension: interfacial tension and emulsification with mineral oil; and sequestering ability. No correlation could be found between the values of any single detergency factor and washing performance. When the samples examined were separated into classes of detergents, that is, soaps, alkaline, surface active, and combined detergents, correlation between a combination of factors and the washing performance test results was demonstrated. Optimum values for each factor were determined by the range set by the maximum-minimum values for the excellent detergents (93.5 percent-100 percent soil removal) for each Similarly, the maximum-minimum factor values for the good, tvpe. fair, and poor detergents for each class were tabulated.

The detergency factors that were significant for evaluating dishwashing detergent performance (in lieu of performance tests) for the various classes of detergents were as follows:

Soaps. Phenolphthalein alkalinity, total alkalinity, surface ten-

Alkaline Detergents. pH, inactive alkalinity, surface tension.

Surfactants. Surface tension, and interfacial tension and emulsification with mineral oil.

Combined Detergents. pH, total alkalinity, surface tension, and interfacial tension and emulsification with mineral oil.

In general, however, decreasing pH and emulsifying power, and increasing phenolphthalein, inactive and total alkalinity, surface and interfacial tension indicated decreasing soil removing ability.

Using the limiting values shown in table 3 for the above criteria. it was found possible to correctly correlate with the washing performance test results 100 percent of the soaps, 95 percent of the surface active agents, 91.7 percent of the alkaline detergents, and 87.5 percent of the combined detergents studied. It was also found possible to modify the combined detergents with good washing performance so that the significant chemical and physical characteristics would be within the range of the excellent detergents. This modification improved the washing performance test results of 86.7 percent of them to excellent. However, fair or poor combined detergents were improved only slightly with modification. Fair alkaline detergents could be modified by adding surface active agents so that the characteristics and washing performance test results were excellent. Poor alkaline detergents were improved but slightly by changing their characteristics to match those of excellent detergents.

Conclusions

From the data presented in this paper, it is concluded that:

1. No single factor of detergency can be used to judge washing performance of the detergent.

2. If the detergent is classified as a soap, surfactant, alkaline, or combined detergent, a comparison of certain pertinent detergency factors will permit prediction of the washing performance of a large percentage of detergents.

3. With present knowledge, a washing performance test is the only reliable method for evaluating the dishwashing performance of detergents.

REFERENCES

- Mann, Edward H. and Ruchhoft, C. C.: A performance test for rating dishwashing detergents. Pub. Health Rep. 61: 877-887 (1946).
 Norris, Francis I. and Ruchhoft, C. C.: Some improvements in the performance test for rating dishwashing detergents. Pub. Health Rep. 63:
- 97-109 (1948).
 (3) Hucker, G. J.: Progress Report on Detergent Evaluation Investigation. New York Agriculture Experimental Station, Geneva, New York, April
- 1, 1942-March 1, 1943.
 Mann, Edward H. and Ruchhoft, C. C.: Sequestration of calcium and magnesium in the presence of alkaline detergents. Pub. Health Rep. 61: 539-545 (1946).

Poultry Diseases as Public Health Problems (

By C. A BRANDLY, D.V.M.*

The infectious diseases of animals constitute a considerable hazard to man. In turn, but generally minimized, is the fact that various infections considered native to man are a threat to others of the animal kingdom. Interspecies infection chains or cycles are, as a rule, favored by similarity or closeness of relationship of the hosts. Hence, an infection chain among mammals generally has greater expectancy of prosperity than if it were to involve an avian host or hosts, and vice versa. That this may not inevitably follow is apparent; therefore, the hazards of current poultry diseases to public health are the subject of this discussion.

Extent of Poultry-Human Disease Problem

A substantial number of infectious and parasitic agents apparently may pass from active or passive residence in poultry to man. In his excellent recent review, Ingalls (12) lists 26 such agents including representatives of viral, bacterial, fungal, protozoal, and metazoan nature. Earlier, Brandly (3) had discussed the infections common to man and fowl from the standpoint of poultry inspection and public health.

A few of these diseases are mentioned to illustrate the nature of the host-parasite relationship as well as certain epizootiological implications pointing towards means for their ultimate suppression as public health hazards.

Food poisoning or infection in man by the genus Salmonella constitutes a vexing problem. Few genera of microbes have such a wide host range. More than 150 antigenic types of Salmonella have been recognized. Most of these involve several, if not many, hosts, and the number is being enlarged continually. Therefore, as pointed out by Hinshaw and McNeil (9) "There may well be no truly avian nor truly human types; in fact, such a description frequently means only priority in isolation. This is illustrated by Salmonella typhimurium which was named for the host from which it was first isolated—the mouse. S. typhimurium is now known to be of importance in other hosts, such as birds and humans, while S. enteritidis is the more common cause of salmonellosis in mice."

^{*}From the Departments of Veterinary Science and Agricultural Bacteriology, University of Wisconsin, Madison, Wis.

True staphylococcal and streptococcal food poisoning in man has not been traced directly to avian origin, although the species and types of both these organisms recoverable from fowl have enterotoxic potentialities. Nevertheless, the staphylococci and streptococci are not common causes of disease among birds, and their contamination of poultry eggs or meat foods may be derived from nonavian sources.

Considered a native pathogen of swine, *Erysipelothrix rhusiopathiae* is an occasional and genuine occupational hazard to persons contacting or handling poultry infected with it. Less frequently occurring than swine erysipelas infection but more dangerous to man is the bacterial disease, tularemia, acquired not only by handling infected birds but also by consuming the inadequately cooked flesh.

The recent studies of Felsenfeld and associates (6) reemphasize that all three species of *Brucella* may find at least a temporary reservoir in chickens from whence they may be disseminated. Listeriosis is a relatively rare but serious bacterial disease of both fowl and man. The means of natural spread and routes of infection require considerable clarification.

Of the virus infections of man in which birds or poultry may play an active or intermediate role are psittacosis and several of the encephalitides, namely eastern and western equine encephalomyelitis, St. Louis and Japanese B encephalitis, and perhaps unidentified maladies. Psittacosis, native to parrot and related species in the jungle, appears to have expanded its host range spectrum significantly in recent years. Hence, infection among ducks and chickens, as well as columbiform and psittacine birds, would appear to constitute an increasing public health problem.

Further elucidation of the apparently complex infection chains, both direct and alternative, of the encephalitic viruses must precede a better understanding of them and the means of developing more effective combat methods as regards the role of poultry.

Only recently recognized as a public health problem is the virus entity, Newcastle disease. This virus possesses a substantial range of tissue tropisms—pneumal, neural, and endothelial. The latter is manifested in a hemorrhagic conjunctivitis of man which is being reported with increasing frequency. To the earlier records of occupational infection among virus workers in the laboratory and of poultry handlers, Burnet (4), Anderson (1), Shimkin (19), Yatom (21), Ingalls and Mahoney (11), Freyman and Bang (7), may be added the recent case reports of Kujumgiev (17), Ingalls (12), Boney (2), and Gustafson and Moses (8).

Current renewed interest in diseases caused by the higher fungi, for example, histoplasmosis, coccidioidal mycosis, and sarcosporidiosis, must embrace further attention to the possible role of poultry and birds from the veterinary public health standpoint.

May 25, 1951 940097-51-5 669

Metazoan animal parasites which may infest both man and birds, cyclically or otherwise, include certain mites and lice, schistosomes and echinostomes. Aside from involving the skin or other tissues, these parasites may act as carriers or vectors of virus or other pathogens. Instances include recovery of equine encephalomyelitis and St. Louis encephalitis viruses from chicken mites.

Adaptation and Spread

The behavior of certain of the aforementioned pathogens, well adjusted to transfer from avian hosts to man, is sufficiently well known so that their suppression and eventual elimination awaits only the activation of the known means of control. This may require the erection of new barriers or precautions, in some instances, and, in others, the repair of old ones. Full scale efforts to discourage marketing of questionable or sick fowl by rigid ante-mortem and post-mortem inspection must precede and accompany well-planned and persistent programs to eradicate the avian reservoirs of infection. On the other hand, there is the perpetual problem of working out unknown epizootiologies and of recognizing new threats, both potential and actual, in the form of bird to man infection chains. In one respect, diseases of fowl and other birds represent a greater hazard to man than those The United States population of domesticated fowl of mammals. or poultry approximates a billion, while that of all our mammals classed as livestock is less than one-half this figure. Numerically then, there is the expectancy of greater opportunity for contact with diseased birds and, with this contact, an increased opportunity for adaptation of the disease agent from Aves to man. Strains of infectious agents, or their elementary components, which have the potential for adaptation to new hosts may, in consequence, more often encounter favorable new soil for their perpetuation.

Recognized as bearing on the transferrability of the infectious agent are such virulence factors as communicability (20). Ability to survive during sojourn outside of the animal is a pertinent quality of communicability.

Virulence of certain Salmonella has been shown by Maaloe (18) to be independent of their ability to penetrate the host's tissues. In contrast, penetrability of *Pasteurella tularensis* (5) is an essential attribute of virulence of this agent. Pneumotropism, as it may result in a large release of infective aerosol over a protracted period, would favor a high incidence of exposure and, therewith, selective adaptation. Newcastle disease virus, quite resistant to the poultry house environment, possesses this quality although the virus is eliminated over a brief time, and the carrier rate is low. In contrast, psittacosis is characterized by a more protracted course during which the infection may be released in substantial quantity. Furthermore, there is a high rate of carrier, latent, and recurrent cases.

Adaptations to new host-parasite relationships are, as a rule, slow. The more recent evidence of infection of man by Mycobacterium avium may suggest progress toward adaptation as a result of repeated or prolonged contact.

Control

Of first importance toward suppressing the incidence of infections which man may acquire from poultry is the prime necessity of eliminating the reservoirs of infection. Improvements in diagnostic or detection methods will be largely nullified without adequate and judicious use of these methods. The need for caution is emphasized by the finding of neutralizing as well as antihemagglutinating factors against Newcastle disease virus which rise in titer following infection of man with mumps virus (14, 15, 16).

The problem which the wide prevalence and extensive host spectrum of the Salmonella appears to pose seems less formidable in the light of the experience of Hinshaw and McNeil (9) in eradicating paratyphoid infection from turkey ranches. Surveys had shown that snakes might harbor and eliminate the causative Salmonella from season to season. Control of snakes removed the reservoir of infection for the turkeys. Likewise, it was found that human carriers may infect poultry and other animals (10).

In summation, it may be emphasized that suppression and eventual eradication of transmissible diseases common to birds and man require, at the onset, thorough elucidation of epizootiology together with adequate and often needed improvements in detection and diagnostic methods. These knowledges and skills, supplemented by sound long-range perspectives and practices and abetted by persistent educational programs must inevitably lead to success against this costly and needless loss and waste. Now, and in the future, necessary safeguards must aim to reduce the "occupational hazards" both against established bird to man infection chains, and against the factors of contact and exposure which may favor adaptation of other infectious agents to man from birds, and vice versa. Finally, a sound and inclusive poultry inspection service based on established practices and under competent veterinary supervision must be our primary bulwark toward protecting both the health of the public and the integrity of one of our major sources of food.

REFERENCES

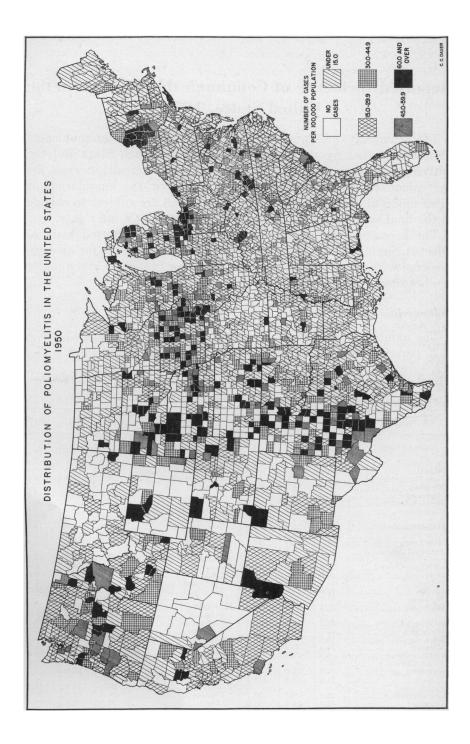
- (1) Anderson, S. G.: A note on two laboratory infections with the virus of Newcastle disease of fowls. Med. J. Australia 1:371 (1946).
- (2) Boney, W. A., Jr.: Personal communication, 1950.
 (3) Brandly, P. J.: Poultry inspection as part of the public health program. J. Am. Vet. Med. Assoc. 112:10-17 (1948).

- (4) Burnet, F. M.: Human infection with the virus of Newcastle disease of fowls. Med. J. Australia 2:313-314 (1943).
- (5) Downs, C. M., Corriell, L. L., Pinchot, G. B., Maumenee, E., Klauber, A., Chapman, S. S., and Owen, B. J.: Studies on tularemia. The comparative susceptibility of various laboratory animals. J. Immunol. 56: 217-228 (1947).
- (6) Felsenfeld, O., Young, V. M., Loeffler, E., Ishihara, S. J., and Schroeder, W. F.: A study of the nature of brucellosis in chickens. Am. J. Vet. Research. 12:48-54 (1951)
- (7) Freymann, M. W., and Bang, F. G.: Human conjunctivitis due to New-castle virus in the U. S. A. Johns Hopkins Hosp. Bull. 84:409-413 (1949).
 (8) Gustafson, D. P., and Moses, H. E.: Isolation of Newcastle disease virus from the eye of a human being. J. Am. Vet. Med. Assoc. 118:1-2 (1951).
- (9) Hinshaw, W. R., and McNeil, E.: Proc. 47th Annual Meeting U. S. Live-
- (10) Hinshaw, W. R., McNeil, E., and Taylor, T. J.: Avian salmonellosis (types of Salmonella isolated and their relation to public health). Am. J. Hyg.
- 40:264-278 (1944). (11) Ingalls, W. L., and Mahoney, A.: Isolation of the virus of Newcastle disease from human beings. Am. J. Pub. Health 39:737-740 (1949) Paper presented
- (12) Ingalls, W. L.: Diseases of poultry transmissable to man. Paper presented at Annual Conference of the American Veterinary Medical Association, Miami Beach, Fla., August 1950. (13) Ingalls, W. L.: Personal communication, 1950. (14) Jordan, W. S., and Feller, A. E.: The relationship of complement-fixing and Numerical Networks.
- (17) antihemagglutinating factors against the viruses of mumps and Newcastle disease. J. Lab. and Clin. Med. 36:369-377 (1950).
 (15) Jungherr, E., Luginbuhl, R. E., and Kilham, L.: Serological relationships of mumps and Newcastle disease. Science 110:333-334 (1949).
 (16) Kilham, L., Jungherr, E., and Luginbuhl, R. E.: Antihemagglutinating fortunation for the provided for the second sec
- and neutralizing factors against Newcastle disease virus (NDV) occurring in sera of patients convalescent from mumps. J. Immunol. 63:37-49 (1949).
- (17) Kujumgiev, J.: Infezione umana (conjuintivite) da virus della pseudopeste aviaria in Bulgaria. Zooprofilassi (Italy) 3:22-23 (1948).
- (18) Maaloe, O.: Pathogenic-apathogenic transformation of Salmonella typhimurium. Acta path. et microbiol. Scandinav. 25:414-430 (1948). (19) Shimkin, N. I.: Conjunctival haemorrhage due to an infection of Newcastle
- virus of fowls in man (laboratory and contact infection). Brit. J. Ophth. 30:260-264 (1946)
- (20) Watson, D. W., and Brandly, C. A.: Virulence and pathogenicity. Annual Review Microbiol. 3:195-220 (1949).
- (21) Yatom, J.: Outbreak of conjunctivitis in man associated with virus of Newcastle disease. Harefuah (Tel Aviv) 30:57-58 (1946).

Reported Incidence of Communicable Diseases in the United States, 1950

This summary presents provisional total cases of communicable diseases reported by the health departments of each State and the outlying territories and possessions to the Public Health Service for the calendar year 1950. The figures represent the cumulation of cases reported each month during the year and are subject to change in the final annual reports released by each State at a later date.

The accompanying table shows the numbers of reported cases of selected communicable diseases by State for 1950. Data for diseases reported with low frequencies or by only a few States are given under the heading, "Additional Diseases."


Poliomyelitis

The number of cases of poliomyelitis reported in 1950 was 33,209— 21.3 percent lower than the 42,173 cases reported in 1949. The

Area	1950	1949	1948	Area	1950	1949	1948
United States	22.0	28.4	19.1	South Atlantic-Con.			
N				Virginia	36.4	10.2	17.6
New England	13.0	37.1	4.3	West Virginia	18.7	18.0	9.4
Maine	10.5	49.4	4.5	North Carolina	18.3	6.3	65.6
New Hampshire	6.4	43.0	4.5	South Carolina	20.1	5.5	19. 3
Vermont	8.4	41.7	7.3	Georgia	13.7	6.8	7.2
Massachusetts	11.0	37.8	3.8	Florida	16.8	10.5	10. 9
Rhode Island	6.9	24.4	1.0	11 1			
Connecticut	24.0	32.7	6.1	East South Central	16.6	16.5	8.6
				Kentucky	23.0	24.3	7.2
Middle Atlantic	20.8	25.4	10.1	Tennessee	16.9	16.6	11.7
New York	27.5	35.5	9.7	Alabama	9.2	8.4	7.2
New Jersey	17.9	31.7	17.3	Mississippi	17.8	17.2	7.9
Pennsylvania	12.7	8.1	7.3				
•				West South Central	27.7	34.3	17.2
East North Central	23.8	32.8	13.8	Arkansas	17.4	54.2	8.0
Ohio	22.6	22.6	14.8	Louisiana	15.0	8.7	6.0
Indiana	15.5	29.5	10.4	Oklahoma	23.4	61.8	16.9
Illinois	21.6	32.9	13.0	Texas	36.0	30.7	23.3
Michigan	31.7	46.5	12.5		00.0		20.0
Wisconsin	27.1	35.0	20.0	Mountain	17.0	43.3	18.9
		00.0	20.0	Montana	7.8	17.4	13.3
West North Central	25.3	48.9	38.3	Idaho	27.9	89.2	21.5
Minnesota	19.5	64.8	50.0	Wroming	16.0	43.5	30.5
Iowa	52.6	47.9	50.7	Wyoming Colorado	15.2	43. 5 53. 6	30. 3 10. 3
Missouri	10.4	33.9	8.3	New Mexico	19.5	31.0	10.3
North Dakota	6.8	77.4	22.6	Arizona	22.6	24.8	13.7 23.9
South Dakota	27.5	66.0	158.7				
Nebraska	34.1	53.0	57.8	Utah Nevada	12.1	44.2	32.1
Kansas	26.6	39.8	57.8 18.1	Nevada	13.1	17.6	15.7
Mausas	20.0	39.8	18.1	De sie			
South Atlantia		0.0		Pacific	23.4	25.8	45.3
South Atlantic	21.8	9.5	22.7	Washington	26.6	25.0	16.6
Delaware	12.6	14.4	40.4	Oregon	33.8	21.9	14.8
Maryland	29.7	11.3	6.8	California	21. 2	26.5	56.0
District of Columbia	23.5	12.5	19. 2				

Incidence rates for poliomyelitis: United States, each division and State, 1948-50 (Rates per 100,000 estimated midyear population present in area)*

*Source of population estimates, Bureau of the Census.

morbidity rate per 100,000 population in 1950 was 22.0 compared with 28.4 in 1949 and 19.1 in 1948. The States reporting the largest number of cases were New York with 4,079, Texas with 2,778, California with 2,249, and Michigan with 2,031, all of which have large populations. However, the highest morbidity rates were to be found in Iowa with 52.6 cases per 100,000 population; Virginia, 36.4; Texas, 36.0; and Nebraska, 34.5. The States with the lowest rates were New Hampshire, 6.4; North Dakota, 6.8; Rhode Island, 6.9; and Montana, 7.8.

The map shows the distribution of poliomyelitis by counties. Localized areas of varying extent in all parts of the country had relatively high rates of incidence. More of these areas were located in the northern half of the country than in the southern. Individual counties which had excessively high rates were Wythe County, Virginia, where the rate was 810 per 100,000 population; Van Buren County, Iowa, 336; Lewis County, New York, 308; Paulding County, Ohio, 242; and Nelson County, Kentucky, 224.

The peak incidence for the country as a whole was reached later than usual, namely, in the third week of September. In 1949, the peak week was the third week of August. However, as in previous years, the week of highest incidence was reached much earlier in southern States in 1950 than in the northern part of the country.

Diphtheria

The incidence of diphtheria reached a new low level during 1950. A total of 5,931 cases was reported, a decrease of more than 25 percent from the number reported for the previous year. The highest incidence on record was 206,939 cases reported by 46 States in 1921. The largest numbers of cases for 1950 were reported in Texas, 900; North Carolina, 503; and Alabama, 319.

Infectious Encephalitis

The reported incidence of infectious encephalitis increased for the second consecutive year which may be due to better recognition of the disease. From 575 cases in 1948, the number of reported cases rose to 781 and 1,051, respectively, for 1949 and 1950. The 5-year (1945–49) median was 669. Since 1927, the first year for which data are available, the high years are 1933 with 3,332 cases and 1941 with 3,045 cases, and the low year was 1942 when 564 cases were reported. California reported almost a third, 333 cases, of the total cases reported for the country as a whole. Other States reporting high incidences were New York, 144 cases, and Michigan, 72.

Influenza and Pneumonia

There were 284,235 cases of influenza reported for 1950, or more than two and a half times the number, 108,218, reported for the pre-

May 25, 1951

vious year. The outbreak of influenza, as shown by laboratory examinations, was shown to be due to influenza virus, type A-prime.

The incidence of pneumonia increased slightly for 1950, 85,374 cases from 82,882 for 1949. The 5-year median was also 82,882.

Measles

The total of 321,054 cases reported in 1950 indicated that measles was not epidemic in as many parts of the United States as it had been in 1949 when 620,905 cases were reported. The 5-year median was 613,810. The highest incidence on record was in 1941 with 891,051 cases and lowest was 1945 with 144,398. For 1950, the largest numbers were reported in the East North Central States, 98,346 cases, and the Middle Atlantic States, 81,480. The East and West South Central States reported the lowest incidence with 13,040 and 17,893 cases, respectively.

Meningococcal Meningitis

The total number of cases of meningococcal meningitis reported for 1950 was 3,700 as compared with 3,469 for 1949. The year of highest incidence for the country as a whole was 1943 when 17,974 were reported.

Plague

During 1950, three cases of bubonic plague were reported in the Nation as follows: New Mexico, Lea and Sante Fe Counties, one case each; and Arizona, Fort Defiance, one case.

Scarlet Fever and Septic Sore Throat

There were 56,851 cases of scarlet fever reported in 1950, which was the lowest on record. The decline in reported cases of scarlet fever has been partially offset by an increase in the incidence of septic sore throat. During that year, 20,897 cases of septic sore throat were reported compared with 19,867 for 1949, and 15,905 for the 5-year median.

Smallpox

There were only 42 cases of smallpox reported in the United States for 1950. Of these, 17 cases were reported in the West North Central States and 10 in the East South Central States. A total of 56 cases was reported in 1949. The peak year for which data are available was 1921, when 45 States reported 102,707 cases.

Tuberculosis

Total reported cases of tuberculosis (all forms) was 121,663 as compared with 133,612 for 1949 and a 5-year median of 130,474. These figures were obtained from State semiannual reports in many instances and as such are based on color and sex. A portion of the decline for 1950 appears to be due to changes in the definition of a reportable case, particularly in relation to cases of borderline significance found in surveys.

Endemic Typhus Fever

The peak year for endemic typhus fever was 1944, when 5,353 cases were reported. Since that year, the incidence has been decreasing rapidly to 686 cases reported for 1950. The 5-year median was 1,901 cases. States reporting the largest numbers were Texas, 222; Georgia, 165; and Alabama, 130.

Venereal Diseases

Total reported cases of syphilis for the calendar year 1950 was 217,559 as compared with 256,541 reported in 1949. The 5-year median (1945-49) is 349,065.

A decrease in reported cases of gonorrhea and other forms of venereal disease also occurred. For 1950, 286,755 cases of gonorrhea were reported as compared with 318,032 for 1949. A total of 8,212 cases of other venereal diseases were reported, consisting of 5,006 cases of chancroid, 1,779 cases of granuloma inguinale and 1,427 cases of lymphogranuloma.

Whooping Cough

The number of cases of whooping cough was 120,157 for 1950, an increase over the 69,377 cases reported for the previous year. However, it was below the 155,991 cases reported in 1947 and the 265,269 reported for the peak year in 1934.

Additional Diseases

Figures for most of the additional diseases reported by health departments of the States, the territories, and the outlying possessions in 1950, and not shown in the table, are listed below. The numbers in parentheses are category numbers from the manual of the International Statistical Classification of Diseases, Injuries, and Causes of Death, World Health Organization, 1948.

Actinomycosis (132): Colorado 2, Connecticut 1, Georgia 4, Iowa 3, Michigan 2, Minnesota 8, New York 1, Ohio 1, Pennsylvania 1, South Dakota 1, Tennessee 1.

Anthrax (062): Arkansas 1, California 1, Colorado 2, Connecticut 1, Delaware
2, Georgia 1, Maryland 1, Massachusetts 4, New Hampshire 8, New Jersey 7, New York 3, Pennsylvania 21, Texas 1.

Botulism (049.1): California 6, Colorado 3, Minnesota 3, New Mexico 1, Tennessee 1.

Cancer (140-205): Alabama 4,475, Arkansas 522, Colorado 3,290, Florida 4,552, Georgia 292, Idaho 1,098, Kansas 4,622, Louisiana 2,834, Montana 1,104, Nevada 38, New Mexico 834, North Dakota 730, Pennsylvania 8,623, South Carolina 297, Tennessee 3,391, Utah 338, Wyoming 442, Alaska 15, Virgin Islands 7.

May 25, 1951

Reported Cases of Selected Communicable Diseases: United States, Each Division and State, 1950

[Numbers under headings are category numbers of the Sixth Revision of the International Lists, 1948]

*Reported not notifiable.

Reported Cases of Selected Communicable Diseases: United States, Each Division and State, 1950-Continued

[Numbers under headings are category numbers of the Sixth Revision of the International Lists, 1948]

	Нера-	1				Menin-	
	titis,	Hook-	Influ-	Malaria		gitis,	I
	infec-	worm		Mialai la	Measles		Mumps
Area	tions	disease				gococ-	
			1			cal	j
	(092,	(100)	(480-	(110-	(00-	(0	(000)
	part)	(129)	483)	117)	(085)	(057.0)	(089)
	27	4	1, 613	6	19, 468	140	20, 829
New England Maine New Hampshire Vermont	8		1,443		999	24	3, 318
Maille	0		55		572	5	775
New Hampshile					607	2	4, 283
Massachusetts	8		(*)	3	12,854	61	8,431
Rhode Island	0		- 24		342	ii	347
Connecticut	11	4	76	3	4,094	37	3,675
Middle Atlantic	730	191	646	23	81, 480	587	48, 758
New York	102	190	1 302	12	32, 515	248	14, 135
New Jersey Pennsylvania East North Central			204	10	32, 515 30, 813	79	10.335
Pennsylvania	628	1	140	1	18, 152	260	10, 335 24, 288
East North Central	123	13	4, 336	29	98, 346	725	41,677
Ohio		2	210	2	13, 490	227	9,678
Indiana	36		. 400	1	7.604	31	1,147
Illinois	43		. 423	22	19, 220	223	6,974
Michigan	44	11	142		38, 245	132	9, 916
Wisconsin. West North Central			3, 161	4	19,787	112	13, 962 14, 7 0 4
West North Central	439	5	3, 258	5	24.384	301	14, 704
Minnesota	411		. 169	2	4,037	66	17
Iowa	14	1		1	10,872	44	2, 231
Missouri			. 516	2	2,372	99	1, 371
North Dakota			. 803		372	19	16
South Dakota		2	11		808	18	240
Nebraska	1		774		3,924	16	1,500
Kansas	13	2	985		1,999	39	9, 329
South Atlantic	5	10,051	78, 078	192	24, 931	562	9, 467
Delaware			4 628		628	18	119
Maryland District of Columbia	4			6 2	1,544	63	2,096
District of Columbia			85 53, 282		1, 783 2, 947	16	697
District of Columbia Virginia West Virginia	·····i		14,869	16	2, 947 6, 171	121 78	2, 575 1, 501
West Virginia	1		14,009	1 37	5, 116	108	1,001
North Carolina South Carolina			2,849	86	2 001	46	
			6, 126	37	2 240	64	1.027
Florida		10, 051	235	7	2, 001 2, 240 2, 501	48	1, 452
Florida East South Central	233	3, 237	16, 236	175	13, 040	439	3, 563
Kentucky	18	162	2.630	6	5 315	137	934
Tennessee	215	14	5, 321	18	3.760	166	1.330
Alabama			7,784	87	1.654	84	1, 299
Mississippi West South Central Arkansas		3,061	501	64	2, 311 17, 8 93	52	
West South Central	1	1, 162	160, 670	1, 755	17, 893	520	5, 246
Arkansas		10	17,419	52	1,885	63	2,071
Louisiana		1, 111	123	5	786	61	242
Oklahoma	1	41	11,768	93	646	51	2, 933
Texas			131, 360	1,605	14, 576	345	
Mountain	46	2	17, 679	23	20, 529	80	10, 808
Montana	13		5,184		1,833	8	615
Idaho Wyoming Colorado	8		2, 518	1	1,875	8	630
w yoming	6		382	3	651		411
Colorado	4		2, 546	3	5, 431 972	27	2, 332 782
New Mexico	•••••		114	1	2,566	3 17	182
Arizona	9		6, 198	13	6,861	17	2, 742 3, 094
Utah	6	2	271 466	2	340	í	202
Nevada Pacific	274	í	1, 719	19	20.983	346	34, 779
Woshington	99	•	635	1	3, 695	65	1, 434
Omeon	127	3	595	i	784	39	1, 101
Washington Oregon California	48	v	489	17	16, 504	242	33, 345
~ waaiVI 1110							
	2, 727	14,668	284, 235	2, 227	321,054	3,700	189, 831
-		15 910	108, 218 284, 138	4, 231 17, 317	620, 905 613, 810	3,469	214, 073 196, 317
Total 1950	1.961				010 010	a' 100	106 217
-	1, 961 1, 458	15, 810 15, 810	284, 138	17, 317	013, 810	3, 469	190, 517
Total 1950 Total 1949 Median 1945-49 Alaska	1, 961 1, 458	15, 810					
Total 1950 Total 1949 Median 1945-49 Alaska	1.961	15, 810	535	17, 317	346	3,409 5 7	491
Total 1950 Total 1949 Median 1945-49 Alaska	1,961 1,458 5	15, 810		1		5	491 152
Total 1950 Total 1949 Median 1945-49 Alaska	1,961 1,458 5 5	15, 810	535 3, 483	1	346 80	5 7	491

*Reported not notifiable. ¹ New York City only.

Reported Cases of Selected Communicable Diseases: United States, Each Division and State, 1950-Continued

[Numbers under headings are category numbers of the Sixth Revision of the International Lists, 1948]

1							
				Rocky			
	Pneu-	Polio-	Rheu-	Moun-		Septic	1~
	monia	myelitis	matic	tain	Scarlet	sore	Sma
Area			fever	spotted	fever	throat	pox
		1		fever			
	(490-	(080.0-	(400-			1	
	493)	080.3)	402)	(104)	(050)	(051)	(084
New England	2. 742	1, 211	98		6, 339	475	
Maine	668	96	7		383	40	
New Hampshire	1	34			278		
Vermont	25	32			143	47	
Massachusetts	(*) 193	513	(*) 91		4, 423 265	108	
Rhode Island	1,855	54 482	(*)		847	16 264	
fiddle Atlantic	17, 622	6.280	663	39	9, 956	90	
New York	11.379	4,079		14	1 4, 902	(1)	
New Jersey	11, 379 2, 908	867	(*) (*)	10	1,410	` 90	
Pennsylvania	3, 335	1.334	663	15	3,644		
ast North Central	8, 924	7, 267	759	29	16, 970	899	
Ohio	1,937	1,794	85	7	6, 541	31	1
Indiana	562	610	11	8	1,536	5	
Illinois	3,856	1,890	183	12	2,087	90	
Michigan	1,963	2,031	473	2	4,665	521	
Wisconsin Vest North Central	606	942	7		2,141	252	
Vest North Central	6, 177	3.581 585	135	5	3, 327	241	
Minnesota Iowa	1, 882 91	1,389	116 2		719 356	203	
Missouri	862	414		2	644	20	
North Dakota	2,456	414	6	4	128	20	
South Dakota	2, 400	183	(*)		118	3	
Nebraska	215	457	1	1	555	Ŭ	
Kansas	655	510	8	2	807	7	
outh Atlantic	10, 719	4,631	316	242	5, 358	3, 410	1
Delaware	19	40	1	1	132		
Maryland	1, 587	695	70	57	756	42	
District of Columbia	895	184	4	1	206		
Virginia	3, 616	1,205	110	76	937	2,756	
West Virginia North Carolina	660	378	39	12	550	251	
North Carolina		751		71	1,855	47	
South Carolina	498	431	28	11	185 546	35 194	
Georgia.	2, 820 624	476	64 (*)	13	540 191	194 85	
Florida ast South Central	7, 506	471 1, 915	365	49	3, 600	292	
Kentucky	1, 282	683	32	7	1,105	138	
Tennessee	2,422	556	91	22	1, 587	154	
Alabama	2, 373	283	178	15	611	(*)	
Mississippi	1,429	393	64	5	297	(*) (*)	
est South Central	24, 689	4.049	98	29	2, 316	10, 686	
Arkansas	1,978	337	9	16	195	1,899	
Louisiana	1,369	404	37	4	168	13	
Oklahoma	1,966	530		9	510	386	
Texas	19,376	2,778	(*)		1,443	8,388	
lountain	3. 357	877	434	5 9	1, 995	3.733	
Montana	40 395	47 166	3	15 10	382 239	149 492	•••••
Idaho Wyoming	395 66	100	64 37	10	239 56	492 3	
Colorado	1,147	205	113	17	436	211	
New Mexico	567	136	59	2	163	4	
Arizona.	926	171	129		433	2, 411	
Utah	138	84	29	7	266	19	
Nevada	78	21		4	20	444	
cific	3, 638	3, 398	767	15	6, 990	1.071	
Washington	663	632	282		1,671	88	
Oregon	908	517	83	12	597	350	
California	2,067	2, 249	402	3	4, 722	633	
	85, 374	33, 202	3, 635	467	56, 851	20, 897	
Total 1950	82,882	42, 173	4,457	560	74, 913	19,867	
Total 1950 Total 1949			4, 515	560	84, 379	15,905	1
Total 1950 Total 1949 Median 1945-49	82, 882 82, 882	25, 196					
Total 1949 Median 1945–49=					10		
Total 1949 Median 1945-49 aska	64	62	30		18 28	71	
Total 1949 Median 1945-49 aska awaii	64 23	62 23	30 28		28	71 5	
Total 1949 Median 1945-49 aska	64	62	30				

* Reported not notifiable. ¹ Cases reported as septic sore throat included with scarlet fever.

Reported Cases of Selected Communicable Diseases: United States, Each Division and State, 1950-Continued

[Numbers under headings are category numbers of the Sixth Revision of the International Lists, 1948]

Area	Te- tanus	Tra- choma	Trich- iniasis	Tuber- culosis (all forms)	Tula- remia	Ty- phoid fever	Para- typhoid fever ¹
	(061)	(095)	(128)	(001- 019)	(059)	(040)	(041)
New England	25		66	5, 137	2	64	
Maine New Hampshire	5		. 13	465		- 14	
Vermont	1			252		1	1
Massachusetts	9		33	2, 493	2		68
Rhode Island	5		4	471		. 8	1
Connecticut	5 32	1	16 157	1, 295	12	- 14 310	8
New York	22	i	127	13,372	1	82	
New Jersev	6		13	3,058	2	61	13
Pennsylvania East North Central Ohio	4		17	6,051	9	167	41
East North Central	57 10	20	34	24, 546 7, 300	115	302 121	165
Indiana	12	1	2	2,237	26	48	8
Illinois	19	5		7.588	71	74	3
Michigan	16	1	11	5.800	9	43	136
Wisconsin. West North Central	29	. 13 863	7	1,621	3 63	16	10
Minnesota	8	6	6	2,675	1	141	28 22
Iowa	2			852		. 9	44
Missouri	7	688		2, 989	53	87	2
North Dakota	2	22		292	2	3	2
South Dakota Nebraska		124 22	i	286 292		27	
Kansas	8	1	· ·	563	7	26	
South Atlantic	101	28	7	20, 799	184	434	147
Delaware			23	315		. 11	3
Maryland District of Columbia	12 2	1		2,635	15	41	8
Virginia	11		4	1,672	44	68	7 20
West Virginia	ĩ	26		2,099	3	69	4
North Carolina				3,658	26	60	85
South Carolina	2 35			1,333	9 69	71	5
Florida	30 38	1	(*)	3, 192 2, 340	18	77 30	53 39
East South Central	112	30	1	11. 993	112	353	48
Kentucky	5	27	4	3, 501	12	118	4
Tennessee	37	3	(*) ¹	4,005	33	126	27
Alabama Mississinni	42 28		. 8	3,092 1,395	19 48	52 57	16
Mississippi West South Central	59	203	5	10, 883	347	651	82
Arkansas	24	77		2,001	193	117	4
Louisiana.	30		2	2,254	27	138	16
Oklahoma Texas	(*) 5	54	(*) 3	2,010 4,618	63 64	83 313	19 43
Mountain	7	415	17	6. 428	95	124	34
Montana	1	74:		422	31	10	2
Idaho	3	<u>-</u> ÷	6	185	2	13	10
Wyoming Colorado		7	1	89 1.657	9 2	3 23	8
New Mexico	2	26	1	910	7	45	4
Arizona	ī	307		2,623	3	27	6
Utah		<u>-</u>		369	39	2	3
Nevada Pacific	51	5 29	35	173 11, 447	2	136	439
Washington	91	2	13	1,896	2	21	42
Oregon	2	6	2	676	2	12	8
California	49	21	20	8,875	2	103	389
Total 1950	473	1, 593	_319	121, 663	934	2, 515	1, 167
Total 1949	473 522	1, 393		121,003	1,218	2, 515	1, 107
Total 1949 Median 1945-49	488	1,465		130, 474	1, 465	2,905	1,006
Alaska Hawaii	13			778	1	19	
Hawaii Panama Canal Zone	13			372 354		19	
Puerto Rico	156			5,857		74	
Virgin Islands			1,2	8			
						I	

*Reported not notifiable.

¹ Includes cases reported as salmonellosis.

Reported Cases of Selected Communicable Diseases: United States, Each Division and State, 1950-Continued

[Numbers under headings are category numbers of the Sixth Revision of the International Lists, 1948]

	Typhu	IS	Ver	nereal dis	eases		Whoo
Area	fever, en- demic	Total syphi lis	- rhea	Chan- croid	Granu- loma Inqui-	Lym- pho- granu- loma	ing cough
	(101)	(020- 029)	(030- 035)	(036)	nale (038)	(037)	(056)
New England Maine		3. 559		24 3	4	9 0	15.54 1,96
New Hampshire	1	182		ŏ	ŏ	1 1	40
Vormont		101		0	0	0	1,78
Massachusetts Rhode Island		- 1, 265 692		11	2	5	5,63
Connecticut		831	753	10	2	3	1, 98 3, 77
Middle Atlantic	7	40, 088	34, 047	343	141	244	20.38
New York	6	25.536	19.621	229	79	178	7,56
New Jersey	i	_ 5,838	3, 933	23	14	21	6,20
Pennsylvania East North Central	1		10, 493	91 657	48 63	45 136	6,62
Chio		40, 254	41, 820 8, 919	54	12	16	28.07 7,33
Indiana		4,144	2,615	14	2	3	1,73
Illinois		11,247	20.879	383	32	88	3, 34
Michigan		- 8,822	8,678	202	17	29	9, 18
Wisconsin West North Central Minnesota		2,155	729	6 8	19	0	6,47
West North Central		12, 269	8.416 848	1		10 0	6.17 1,35
Town		1.953	754	i	ŏ	ŏ	1,16
Iowa Missouri North Dakota		5,720	4,485	47	16	ğ	1,35
North Dakota		254	122	0	0	0	33
South Dakota		322	209	2	0	0	16
Nebraska		- 830 2,354	736 1, 262	13 4	2 1	0 1	30 1,49
Kansas outh Atiantic	228	46.822	86, 669	2, 230	1, 027	490	13, 19
Delaware	NNO	638	261	1	2		26
Marviand	1	4,376	8,097	125	40	35	2, 27
District of Columbia		3,078	13, 500	535	37	26	18
Virginia	4	4,998	9,806	99	57	69	2,82
West Virginia North Carolina South Carolina	1	2,896	3, 499 14, 282	36 250	7 81	0 90	2, 34 3, 30
South Carolina	9 14	5,871	8,682	123	105	21	47
	165	9,156	14, 501	818	252	212	1.05
Florida	34	9, 156 10, 714	14,041	243	446	34	47
Georgia Florida Sast South Central Kentucky	158	26. 744	42. 240	567	228	187	5, 29
Kentucky	1 12	3, 198 5, 213	4, 351 20, 867	15 172	48	1 54	1,95 1,86
Tennessee Alabama	130	6,982	4 248	146	90	27	1,21
Mississippi	15	11.351	12.774	234	83	105	25
Mississippi Vest South Central	288	11, 351 31, 121	45, 020	583	269	210	14. 77
Arkansas	3	7,283	4,155	63	19	42	2,01
Louisiana	62	9,487	11,099	310 76	184	64 9	22 92
Oklahoma Texas	1 222	3, 129 11, 222	5, 125 24, 641	134	58	95	11, 61
Iountain	1	5, 103	4. 494	45	Ĩ	4	6. 52
Montana	1	219	163	1	0	0	61
Idaho		352	401	6	0	0	72
Wyoming		202	106	0	01	0 2	12
Colorado		726	1,073	6 14	ô	1	1, 13 99
Arizona		1,984	1,673	15	2	î	2, 09
Utah		188	119	0	õ	ô	72
Nevada		364	262	3	1	0	12
acific	4	11, 599	20. 630	489	24	137	10, 18
Washington		779 525	1,613 614	132 22	0	2 0	2, 14 1, 41
Oregon	4	10, 295	18,403	335	24	135	6, 62
-			·				
Total 1950	686	217, 559	286, 755	5,006	1,779	1,427	120, 15
Total 1949 Median 1945-49	983	256, 541	318,032	6,744	2, 402 2, 354	1,925	69, 37
Median 1945-49	1, 901	349, 065	345, 501	7, 661	2, 354	2, 526	108, 71
aska		202	668	0	0	0	12
awaji	10	310	444	5	ŏ	ŏ	3
awaii	4	301	535	15	1	1	199
nerto Rico irgin Islands	25	8, 491	6, 988	49	4	15	2, 694
		105	106	0	0	5 (164

Dengue (090): Georgia 1, Mississippi 1, Texas 23, Virginia 3.

- Diarrhea of the newborn (764): California 135, Connecticut 3, Florida 65, Illinois 137, Indiana 9, Iowa 2, Kansas 2, Maryland 8, Michigan 14, Minnesota 10, New Jersey 1, New Mexico 22, New York 18, North Dakota 5, Ohio 110, Oklahoma 8, Pennsylvania 19, Rhode Island 6, South Carolina 31, Washington 4, West Virginia 13.
- Erysipelas (052): Arizona 1, Arkansas 6, Colorado 3, Connecticut 25, Florida 15, Idaho 17, Illinois 148, Indiana 11, Kansas 7, Kentucky 4, Louisiana 4, Maryland 3, Michigan 91, Minnesota 5, Missouri 12, Montana 4, Nebraska 2, Nevada 2, New Mexico 1, North Dakota 9, Ohio 21, Oregon 34, Pennsylvania 45, South Dakota 1, Tennessee 28, Vermont 1, Wisconsin 31, Wyoming 2, Alaska 3, Hawaii 6.
- Favus (131 part): Missouri 4, Nevada 4.
- Food poisoning (049): California 1,322, Colorado 2, Connecticut 84, Florida 30, Idaho 65, Illinois 252, Indiana 51, Iowa 2, Kansas 1, Kentucky 106, Louisiana 12, Maine 1, Minnesota 76, Nevada 165, New Jersey 5, New Mexico 156, New York 988, Ohio 56, Oklahoma 57, Oregon 18, Pennsylvania 300, Utah 3, Washington 10, Alaska 30, Panama Canal Zone 218.
- Glandular fever (infectious mononucleosis) (093): Arizona 40, Connecticut 184, Idaho 27, Kentucky 33, Maryland 21, Michigan 140, Minnesota 406, Montana 1, Nebraska 40, New Hampshire 1, Ohio 2, Oklahoma 9, Pennsylvania 14, Tennessee 67, Washington 52, Alaska 1.
- Impetigo (695, 766): Colorado 57, Connecticut 12, Idaho 51, Illinois 15, Indiana 25, Iowa 6, Kansas 23, Kentucky 95, Maryland 2, Michigan 1,027, Missouri 39, Montana 24, Nevada 133, New York 100, North Dakota 9, Ohio 136, Rhode Island 1, Washington 248, Wyoming 2, Alaska 15, Hawaii 169.
- Leprosy (060): California 9, Connecticut 1, Florida 3, Illinois 1, Louisiana 2, Missouri 1, New Jersey 1, New York 8, Oregon 1, Texas 16, Hawaii 34, Panama Canal Zone 4.
- Ophthalmia neonatorum (033, 765): Arizona 7, Arkansas 4, California 7, Connecticut 2, Florida 22, Georgia 4, Illinois 128, Louisiana 6, Maryland 3, Massachusetts 167, Michigan 23, Mississippi 35, New Jersey 6, New Mexico 5, New York 23, Ohio 535, Pennsylvania 8, South Carolina 4, Tennessee 13, Texas 75, West Virginia 87, Wisconsin 4.
- Pellagra (281): Alabama 21, Arizona 4, Arkansas 14, Georgia 67, Louisiana 1, Nevada 2, New Mexico 4, Oklahoma 10, Tennessee 34, Virginia 6, Virgin Islands 2.
- Plague (058): Arizona 1, New Mexico 2.
- Psittacosis (096.2): California 10, Indiana 1, Louisiana 1, Massachusetts 1, Michigan 4, New York 2, Ohio 3.
- Rabies (094): Arizona 1, Arkansas 1, Indiana 1, Missouri 1, Pennsylvania 3, Tennessee 4, West Virginia 1.
- Relapsing fever (071): California 4, Nevada 10, Oregon 2, Texas 18, Panama Canal Zone 1.
- Rickettsialpox (108): New York City 115.
- Ringworm of the scalp (131 part): Arkansas 3, Connecticut 79, Florida 6, Georgia 97, Illinois 1,406, Indiana 130, Iowa 232, Kansas 99, Kentucky 160, Maryland 1, Minnesota 18, Missouri 40, Montana 4, Nevada 38, New Mexico 1, Ohio 149, Oklahoma 44, Oregon 137, Pennsylvania 32, South Carolina 68, Utah 31, Virginia 245, Washington 897.
- Scabies (135): Idaho 60, Indiana 17, Kansas 33, Kentucky 255, Maryland 6, Michigan 642, Missouri 24, Montana 7, Nevada 54, North Dakota 19, Ohio 57, Pennsylvania 330, Wyoming 3, Alaska 26.

Schistosomiasis (123): New York 73.

- Vincent's infection (070): Colorado 125, Florida 96, Georgia 49, Idaho 33, Illinois 80, Indiana 11, Kansas 41, Kentucky 32, Maryland 18, Montana 3, Nevada 52, New Hampshire 9, Ohio 12, Oklahoma 103, Rhode Island 1, South Dakota 8, Tennessee 73, Vermont 116, Washington 121, Wyoming 1.
- Weil's Disease (072): California 3, Louisiana 1, Massachusetts 1, Michigan 15, Montana 1, New York 1, Ohio 2, Pennsylvania 2, Tennessee 1.
 - * * * * * * *
- Rabies in Animals: Alabama 331, Arizona 10, Arkansas 120, California 100, Colorado 130, Florida 31, Georgia 390, Illinois 106, Indiana 520, Iowa 372, Kansas 48, Kentucky 617, Louisiana 22, Michigan 225, Minnesota 15, Mississippi 62, New Jersey 5, New Mexico 5, New York 1,013, Ohio 306, Oklahoma 125, Pennsylvania 95, South Carolina 324, Tennessee 256, Texas 1,174, Virginia 94, Washington 1, West Virginia 242, Wisconsin 14.

Incidence of Disease (

No health department, State or local, can effectively prevent or control disease without knowledge of when, where, and under what conditions cases are occurring

UNITED STATES .

Reports From States for Week Ending May 5, 1951 (

Rocky Mountain Spotted Fever

Rocky Mountain spotted fever in the Mountain and Pacific States in the past has appeared in March and has reached a peak in May or June. In the 5-year period, 1933–37, the average number of cases reported in March was 11 and in April, 45. In the 5-year period, 1940–44, the average number of cases in March and April was 6 and 29 cases, respectively. In March of the present year, only 1 case was reported and in April none were reported in these groups of States. The disease appears and reaches a peak 1 to 2 months later in the eastern part of the country.

Measles

Measles incidence continues to be higher than for the same period last year. For the current week there were 24,611 cases as compared with 14,452 for the same week last year. The cumulative total for the first 18 weeks of 1951 is 294,061 compared with 160,816 for the same period of 1950.

Epidemiological Reports

"Water Hemlock" Poisoning

Dr. A. S. McCown, Virginia Department of Health, reports the fatal poisoning of three children living in Coeburn, Va., who had eaten water hemlock (*Cicuta maculata*). Three other children were affected but they recovered. The six children, all between 4 and 13 years of age, were reported to have mistaken this plant for wild carrot, which is considered to be edible. The onset of symptoms after ingestion was not accurately determined but was considered to be about 3 to 4 hours. Symptoms in the fatal cases consisted of convulsions and vomiting. The survivors were disoriented for a while in addition to having convulsions and visual disturbances. Poisoning of cattle is known to occur as a result of eating this plant. The roots contain the highest concentration of the active principle, coniine, an alkaloid which produces motor paralysis.

May 25, 1951

Gastroenteritis

Dr. R. M. Albrecht, New York State Department of Health, has reported an outbreak of mild afebrile gastroenteritis in a school in Westchester County. In the investigation made by Dr. E. A. Lane, it was found that 50 pupils and 9 teachers were affected between April 4 and 6. Cases were scattered throughout the school and were confined mainly to those eating in the cafeteria. However, no single food was common to those who became ill. The etiological agent has not been determined.

Rabies

The Veterinary Public Health Section of the Iowa Department of Health reported that 373 animals throughout the State were found to have rabies in 1950. There were 164 rabid dogs, 80 skunks, 64 cattle, 31 cats, and 14 hogs. Other animal species in which the disease was recognized were foxes, raccoons, squirrels, horses, ground hogs, rabbits, and ferrets. In the first 3 months of 1951, 142 rabid animals were reported in 53 of the counties in the State, all confirmed by laboratory examination. There were 14 additional cases reported on the basis of history and clinical manifestations.

Disease	May May		5-year mc- dian 1946-50	sonal low	Cumulative total since seasonal low week		5-year me- dian 1945-46	·		5-year me- dian 1946–50
		May 6, 1950		WCCK	1950-51	1949-50	through 1949–50	1951	1950	1940-30
Anthrax (062) Diphtheria (055) Encephalitis, acute infectious	2 45	89		(1) 27th	(1) 4, 422	(1) 6, 819	(1) 9, 833	28 1, 515		
(082) Influenza (480–483) Measles (085) Meningitis, meningococcal	12 1, 711 24, 611	2, 162	1, 375	30th	(¹) 124, 931 322, 762				132, 420	124, 578
(057.0) Pneumonia (490–493) Poliom yelitis, acute (080) Rocky Mountain spotted	75 1, 452 70	86 2, 366 72	(²) 60	37th (¹) 11th	2, 860 (¹) 411	2, 616 (¹) 450		1, 899 334, 840 1, 623	45, 249	
fever (104)	6 1, 938 17	6 1, 407 17	7 1, 985 2 15	35th	(1) 56, 204 13 (1)	(1) 47, 134 41 (1)	(1) 70, 008 65 (1)	13 40, 513 5 250	24 30, 695 20 363	24 47, 007 44 363
Typhoid and paratyphoid ⁸ fever (040, 041) Whooping cough (056)	48 1, 415	41 2, 691	53 2, 073	11th	285 49, 938	290 68, 646	335 68, 646	720 28, 336	800	820

Comparative Data fo	r Cases of Specified	Reportable Diseases:	United States
---------------------	----------------------	----------------------	---------------

[Numbers after	diseases ar	e International	List numbers,	1948 revision]
----------------	-------------	-----------------	---------------	----------------

¹ Not computed. ² Data not available. ³ Additions for week ended Apr. 21: Florida, 16 cases; Tennessee, 76. ⁴ Including cases reported as streptococcal sore throat. ⁴ Including cases reported as salmonellosis

Reported Cases of Selected Communicable Diseases: United States, Week Ended May 5, 1951

				- numbers	1740 1018		
Area	Diph- theria	Encepha- litis, in- fectious	enza	Measles	Menin- gitis, menin- gococcal	Pneu- monia	Polio- myelitis
	(055)	(082)	(480-483)	(085)	(057.0)	(490-493)	(080)
United States	45	12	1, 711	24, 611	75	1, 452	70
New England	3	1	24	831	2	49 26	
Maine New Hampshire			22	15 15		20	
Vermont. Massachusetts				123			
Massachusetts	3	1		489			
Rhode Island		· 		12 177	2	1 21	
Middle Atlantic	7	5	7	3, 414	13	129	9
New York	4	4	¹ 2 5	1, 122 742	8	46 45	4
New Jersey Pennsylvania		1	5	1, 550	4	38	i
East North Central	6	4	14	4, 528	15	130	3
Ohio Indiana		1	1	1, 263 146	32	6	
Illinois	- -	1	12	880	6	70	3
Michigan		2	1	627	1	54	
Wisconsin				1,612	3		
West North Central	4	1 1	52	1, 668	6	105	9
Minnesota	ī		1	118		13	3 2 1 2
Iowa			7	216	1		2
Missouri North Dakota	1		44	215 73	3 1	3 84	1 9
South Dakota		1		40	1	1	2
Nebraska				65			1
Kansas	2			941	1	4	
South Atlantic	6	1	476	2, 003	12	410	10
Delaware Maryland			3	26 194	2 1	28	
District of Columbia				56	1	8	1
Virginia	2		354	657	1	71	
West Virginia. North Carolina.	13			387 179	3		1
South Carolina	ა		19	30	3	2	1
Georgia		1	100	304	3	301	1
Florida				170	2		6
East South Central	7		300	949	8	109	5
Kentucky	i		27	420	4	28	ĩ
Tennessee	1		224	259	2		
Alabama Mississippi	3 2			227	2	40 41	2 2
MISSISSIPPI	2		49	43		41	4
West South Central	9		589	4, 466	12	362	12
Arkansas			386	360	2	43	1
Oklahoma	1		4 199	33 525	1 2	40 51	4
Texas.	7		155	3, 548	7	228	7
							-
Mountain Montana	1		203 17	1, 212 27	1	75	6
Idaho				135	1		
Wyoming	1			102			1
Colorado			5	295		11	
New Mexico			6 175	127 447		32 32	3 2
			110			04	
Utah				76			
Utah Nevada				3			
Nevada	9			3	e	64	 1A
Nevada	2		46 8	3 5, 540	6 4	83	16 2
Nevada Pacific	1		8	3 5, 540 1, 070 746	4.	15	2
Nevada			8	3 5, 540 1, 070			
Nevada Pacific Washington Oregon California Alaska	1		8	3 5, 540 1, 070 746	4.	15	2
Nerada Pacific Washington Oregon California	1		8	3 5, 540 1, 070 746	4.	15	2

[Numbers under diseases are International List numbers, 1948 revision]

¹ New York City only. Anthrar: New York and Pennsylvania, 1 case each.

Reported Cases of Selected Communicable Diseases: United States, Week Ended May 5, 1951—Continued

Area	tain spotted fever	Scarlet fever	Small- pox	Tulare- mia	and para- typhoid fever ¹	Whoop- ing cough	Rabies in animals
	(104)	(050)	(084)	(059)	(040, 041)	(056)	
United States	. 6	1, 938		. 17	48	1, 415	148
New England		- 166			2		
Maine. New Hampshire		- 19		•	. 1	36	
Vermont		5				8	
Massachusetts		- 115				38 2	
Connecticut		13			1		
Middle Atlantic	. 1	313		2	5	172	8
New York	1	- ³ 166 42		. 2	1	61 64	8
New Jersey Pennsylvania	1	105				47	
East North Central		695		3	3	199	25
Ohio		_ 222			1	32	4 9
Indiana Illinois	• • • • • • • • • • • • • • • • • • •	24		3	2	39 24	9
Michigan		305				40	8
Wisconsin		. 70		.		64	
West North Central		113		2	2	38	27
Minnesota		. 13				2 8	3
Iowa Missouri		. 15		1		6	17
North Dakota		. 2				3	
South Dakota		. 6		.	2	1	
Nebraska Kansas		5		1		2 16	
South Atlantic	1	119		3	6	185	20
Delaware	1	110		1		109	40
Maryland.		13				12	
District of Columbia		7 21			2	10 40	4
Virginia. West Virginia		214			-		i
North Carolina	1	33			1	55	
South Carolina				2	3	1 42	8 7
Florida		2 16				20	
ast South Central		45			,	122	30
Kentucky		18			1	13	13
Tennessee		23			2	32	10
Alabama		3			3	55 22	7
Mississippi	-	1			3	44	
West South Central	1	77		4	8	372	36
Arkansas Louisiana	-	4 6			2 2	30 7	3
Oklahoma		16		1	2	16	3
Texas	1	51		2	4	319	30
fountain	1	93		3	4	141	
Montana		3	- 			18	
Idaho		82				10	•••••
Wyoming Colorado		4				15	
New Mexico		2			2	36	
Arizona		12		3	1	55 7	
Utah Nevada	1	² 62		3	1		••••••
							2
Washington	2 1	317 54			9	96 30	2
Oregon	1	29			3	5	
California		² 234			6	61	
1							
Jaska						2	

[Numbers under diseases are International List numbers, 1948 revision]

¹ Including cases reported as salmonellosis.

² Including cases reported as streptococcal sore throat.

FOREIGN REPORTS

CANADA

Reported Cases of Certain Diseases

Week Ended April 14, 1951

Disease	Total	New- found- land	Prince Ed- ward Island	Nova Scotia	New Bruns- wick	Que- bec	On- tario	Mani- toba	Sas- katch- ewan	Al- berta	Brit- ish Co- lum- bia
Brucellosis Chickenpox Diphtheria Dysentery, bacil-	2 934 3	1		28		$1 \\ 163 \\ 2$	420	1 50 1	13	104	155
lary German measles Influenza Measles	7 541 298 1, 336	 6		156 25 37	 9 6	2 26 251	3 218 6 792	3 34 90	9 1	45 78	2 84 224 75
Meningitis, menin- gococcal Mumps Scarlet fever	10 1, 025 299	5 1		12 2		261 105	3 356 61	2 49 11	50 8	129 50	167 62
Tuberculosis (all forms) Typhoid and para- typhoid fever	230 8	10		9	25 1	58 4	41 2	25	7		55 1
Venereal diseases: Gonorrhea Syphilis	310 104 8	4 3		9 5	9 7	56 56 5	54 17 3	23	、 19 6	49 1	87 9
Primary Secondary Other Whooping cough	9 87 177	3 7		1 4 1	1 6	4 47 27	1 13 71	17	2 4 2	 1 9	9 43

Week Ended April 21, 1951

Disease	Total	New- found- land	Prince Ed- ward Island	Nova Scotia	New Bruns- wick	Que- bec	On- tario	Mani- toba	Sas- katch- ewan	Al- berta	Brit- ish- Co- lum- bia
Brucellosis Chickenpox Diphtheria Dysentery, bacil- lary	6 806 6 3	2		33		3 130 5 2	2 405	27	17	43 1	1 149
Encephalitis, infec- tious. German measles Influenza Measles.	1 493 126 1, 380	1		175 20 86	 11 7	24 	176 5 665	 59 114	1 10 12	20 106	
Meningitis, menin- gococcal Mumps Scarlet fever Tuberculosis (all	1, 000 4 789 289	 1 1		1 14		1 224 91	298 48	39 30	1 47 15	67 45	1 99 59
forms) Typhoid and para- typhoid fever Venereal diseases.	181 15	10		3	17	81 7	28 1	15 1	2	9	16 6
Gonorrhea Syphilis Primary Secondary Other Whooping cough	261 114 7 8 99 174	6 3 3		6 12 2 10	2 1 	51 57 2 3 52 89	27 19 2 15 33	16 5 1 4 10	10 5 5 2	42 9	101 12 1 10 31

MADAGASCAR

2	Al	iens	Nat	tives
Disease	Cases	Deaths	Cases	Deaths
Beriberi Bilharziasis Diphtheria Dysentery: Amebic Bacillary Haluenza Leprosy Malaria Mum ps Plague Plague Pretumonia (all forms) Puerperal infection Relapsing fever Tuberculosis, respiratory	4 1 1 2 94 6 	2	$\begin{array}{c} 2\\ 31\\ 8\\ 110\\ 1\\ 1, 921\\ 26\\ 31, 363\\ 98\\ 75\\ 64\\ 502\\ 5\\ 1\\ 176\\ 7\\ 7\\ 388\end{array}$	2 2

Reported Cases of Certain Diseases and Deaths-January 1951

WORLD DISTRIBUTION OF CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER

The following tables are not complete or final for the list of countries included or for the figures given. Since many of the figures are from weekly reports, the accumulated totals are for approximate dates.

CHOLERA

(Cases)

Place	January- February	March	April 1951—week ended—					
r lace	1951	1951	7	14	21	28		
AIEA								
Burma	484	119	81	118	1 63	1 78		
Akyab Baggein	78	2 11	8	12	53	66		
Moulmein	1	86	36	28	8			
Rangoon	10	1		6	2			
India	20, 670	7, 971	1 167	1 211	1 223	1 327		
Bombay	1				1			
Calcutta	565	628	160	203	210	322		
Cuddalore	3	4		<u>-</u> -	<u></u>			
Madras	88	30	2	8	11	5		
Nagpur Negapatam	58 68	9 19						
Negapatam Tiruchirappali	08 71	29						
Tuticorin	23	6	5					
India (French):	20	, v	Ů					
Karikal	32	4						
Pondicherry	67	2 71						
Indochina:								
Cambodia	30	5			32			
Viet Nam	4	3	7	3				
Cantho Haiphong	3		2					
Soc Trang.	3 1	1						
Pakistan	3, 033	2,067	251	236	15	14		
Chittagong	1	2,007	4	200	5	4		
Dacca	18	14	3	4				
Thailand					1			

¹Preliminary. ⁺Including imported cases. ⁺Suspected.

PLAGUE

(Cases)

	January-	March	Ар	ril 1951—	week end	led—
Place	February 1951	1951	7	14	21	28
AFRICA Belgian Congo	3	7 7 119 23	1 1 6 6	33		
ASIA Burma	2, 546 4 4 	45 	6 5 20 4 12 3 4 5 	1 4 1 3 35 4 34 1 1 5 5	* 20 * 16 * 2 * 1 1 * 1 * 3 3	5 19 4 11
Java. Bandoeng. Djakarta. Jogjakarta. Semarang. Madura. Thailand.	4 41 2 41 7		1 		 1 12	
SOUTH AMERICA Ecuador Chimborazo Province	6 6	2 2				

¹ Includes suspected cases. ³ Apr. 1-10, 1951. ³ Apr. 11-20, 1951. ⁴ Imported. ⁵ Preliminary figure. ⁶ Includes imported cases.

SMALLPOX

(Cases)

	1	1	1	1	1	1
AFRICA						
Algeria Bechuanaland	16 80	22				
Belgian Congo	306	375	71	57	37	
British East Africa:	300	519	1 11	01	31	
Kenya	1			1		
Nyasaland		9	1	12		
Tanganyika		12				
Cameroon (British)	4					
Cameroon (French)		14		16	\$1	
Egypt Ethiopia		1 1				
French Equatorial Africa		17		15		
French West Africa.	719	426		139	5	
Dahomey	229	420		18	15	
Guinea	7	2				
Ivory Coast	49	53		1 46		
Niger Territory	138	82		1 17		
Senegal.		2				
suaan	214	143		1 54		
Upper Volta	82	83		1 14		
Cold Court	265	39	13	6		
Morocco (French)	205	39	13	0		
Mozambique	45	38				
Nigeria	2, 278	388		•••••		
Rhodesia:	_, _,					
Southern	210	27			l	

SMALLPOX—Continued

(Cases)

	January-	March	April 1951—week ended—					
Place	February 1951	1951	7	14	21	28		
AFRICA—continued								
Sierra Leone	2	1						
Sudan (Anglo-Egyptian)	12	4		1				
Togo (French)	21	9						
Tunisia		1						
Union of South Africa	269							
ASIA			1		1.			
Arabia		2						
Aden.	-	*1						
Oman.		1 45						
Afghanistan	118	45 238	29	17	7			
Burma	228	238	29	11	1			
Ceylon	4	10			-			
China	58, 744	45.922	4 776	4 454	4 479	4 36		
India India (French)	658	1,092		141	- 110			
India (French)	58	1, 092		141				
India (Portuguese)	56	44						
Cambodia	55	20						
Viet Nam	34		70	48	77	6		
Indonesia:	34	140	10	10		0		
Borneo.	487	255	102	59				
Java	407	200	102	8	19			
Java	134	75	3		10			
Irag	99	12	l v	5	4			
Japan	16	7		Ů				
Pakistan	10. 600	9, 439	209	20	4	1		
Straits Settlements	10,000	0, 100			-			
Thailand	26	6			1			
Turkey						₿ 120		
EUROPE								
Great Britain:								
England:								
Brighton	15							
Portugal Netherlands	1					6]		
SOUTH AMERICA								
British Guiana	8	3						
Colombia	9	11 II						
Ecuador	68	3						
Paraguay	7							
	•							

¹ Apr. 1-10, 1951. ² Apr. 11-20, 1951. ³ Imported. ⁴ Preliminary figure. ⁶ Mar. 25-Apr. 28, 1951. ⁶ Date of telegram May 1, 1951.

TYPHUS FEVER*

(Cases)

		1			,	1
AFRICA Algeria Belgian Congo	5	5				
British East Africa: Kenya	8					
Somaliland Uganda		1				
Egypt Eritrea Ethiopia	34 4 141	17 2 97	1		1	•••••
Libya: Cyrenaica		1				
Tripolitania Morocco (French)	1	1		1	1	••••••
Morocco (Spanish) Tunisia	7			 	•	•••••
Union of South Africa	11					

TYPHUS FEVER—Continued

(Cases)

Disc	January- February	March	April 1951—week ended—					
Place	1951	1951	7	14	21	28		
ASIA Afghanistan	11 53 5 5	65 20 13 1 107 9 2 2 1 34 34 13	 	2 7 2 		 13 6 3		
EUROPE Portugal Sicily Yugoslavia	1 5 34	2 32						
NOBTH AMERICA Costa Rica	1 1 1 1 1 2 14	¹ 5 ¹ 4 ¹ 1 ³ 15		······				
SOUTH AMERICA Chile	20 17 * 128 11 * 2	21 9 132	8	7				

*Reports from some areas are probably murine type, while others include both murine and louse-borne types.

¹ Murine. ² Includes murine type.

YELLOW FEVER

(C-cases; D-deaths)

AFRICA							
Gold Coast	C	1	4	2	12	13	
Accra		1	2	1 11			
Adeiso	C		. 2		12	13	
Nigeria	C					11	
Eziachi	c					1 1	
Sierra Leone	C	11	11	1			
Koinadugu District	C		1 1				
Freetown	C	11	11				
NORTH AMERICA							
Panama	c				1		
Bocas Del Toro Province	Č				Ī		
					-		
SOUTH AMERICA							
Brazil	D	2 400	*2				
Goiaz State		\$ 14	*1				
Goiania	D	*1	+1				
Goiaz	D	*3					
Niquelandia	D	\$3					
Porangatu	D	*1					
Uruacu	D	*2					
Matto Grosso State	_ D/	2					
	D						
U010mD1a	D	12	3				
Boyaca Department	D		3				
Boyaca Department	D		3				
Boyaca Department Otanche Caqueta Commissary	D		3				
Colombia Boyaca Department Otanche Caqueta Commissary Montanita Meta Territory			3				

YELLOW FEVER-Continued

(C-cases; D-deaths)

Disc	January-	March	April 1951—week ended—					
Place	February 1951	1951	7	14	21	28		
SOUTH AMERICA—continued								
Colombia-Continued								
North Santander DepartmentD	4	1						
La VegaD	3							
RionegroD	1	1						
Santander DepartmentD	5	1						
CampohermosoD	1							
GuamalesD	1							
MaradalesD	1							
Tambo RedondoD	1							
VeneoasD	1							
EcuadorC	35	49	1					
QuinindeD		1						
Santo Domingo de Los ColoradosC	35	48						
_ San MequelD			1					
PeruD	1							

¹ Suspected. ³ The number of deaths from Dec. 1–Feb. 20, 1951, was estimated to be 400 and the number of cases was estimated to be 2,000. ³ Confirmed deaths.